Sulf

De la Wikipedia, enciclopedia liberă
Salt la: Navigare, căutare
Sulf
Sulfur-sample.jpg
FosforSulfClor
O
  Orthorhombic.svg

16
S
 
               
               
                                   
                                   
                                                               
                                                               
S
Se
Tabelul completTabelul extins
Informații generale
Nume, Simbol, Număr Sulf, S, 16
Serie chimică nemetale
Grupă, Perioadă, Bloc 16, 3, p
Densitate 1960 kg/m³
Culoare galben
Număr CAS 7704-34-9
Număr EINECS 231-722-6
Proprietăți atomice
Masă atomică 32,065 u
Rază atomică 100 (88) pm
Rază de covalență 102 pm
Rază van der Waals 180 pm
Configurație electronică [Ne] 3s2 3p4
Electroni pe nivelul de energie 2, 8, 6
Număr de oxidare ±2, 4, 6
Oxid acid tare
Structură cristalină ortorombică
Proprietăți fizice
Fază ordinară solid
Punct de topire 115,2 °C ; 388,36 K
Punct de fierbere 444,7 °C ; 717,87 K
Energie de fuziune 1,7175 kJ/mol
Energie de evaporare 45 kJ/mol
Temperatură critică  K
Presiune critică  Pa
Volum molar 17,02×10-6 m³/kmol
Presiune de vapori 2,65×10-20 Pa
Viteza sunetului  ? m/s la 20 °C
Forță magnetică
Informații diverse
Electronegativitate (Pauling) 2,58
Căldură specifică 710 J/(kg·K)
Conductivitate electrică 0,5×10-15 S/m
Conductivitate termică 0,269 W/(m·K)
Prima energie de ionizare 999,6 kJ/mol
A 2-a energie de ionizare 2252 kJ/mol
A 3-a energie de ionizare 3357 kJ/mol
A 4-a energie de ionizare 4556 kJ/mol
A 5-a energie de ionizare 7004,3 kJ/mol
A 6-a energie de ionizare 8495,8 kJ/mol
A 7-a energie de ionizare {{{potențial_de_ionizare_7}}} kJ/mol
A 8-a energie de ionizare {{{potențial_de_ionizare_8}}} kJ/mol
A 9-a energie de ionizare {{{potențial_de_ionizare_9}}} kJ/mol
A 10-a energie de ionizare {{{potențial_de_ionizare_10}}} kJ/mol
Cei mai stabili izotopi
Simbol AN T1/2 MD Ed PD
MeV
32S 95,02 % stabil cu 16 neutroni
33S 0,75 % stabil cu 17 neutroni
34S 4,21 % stabil cu 18 neutroni
35S sintetic 87,32 zile β- 0,167 35Cl
36S 0,02 % stabil cu 20 neutroni
Precauții
NFPA 704
Unitățile SI și condiții de temperatură și presiune normale dacă nu s-a specificat altfel.
Sulf

Sulful (numit și pucioasă) este elementul chimic cu simbolul S și cu numărul atomic 16. Este un nemetal polivalent abundent în natură. În condiții standard de temperatură și presiune, moleculele de sulf prezintă o aranjare octatomică, având formula S8. Sulful elementar este un solid cristalin, de culoare galbenă. Din punct de vedere chimic, reacționează cu toate elementele, mai puțin cu aurul, platina, iridiul, azotul, telurul, iodul și gazele nobile. Se află în perioada a 3-a, în grupa a VI-a principală, fiind astfel un calcogen.

Sulful este un element esențial în corpul tuturor organismelor vii, dar de cele mai multe ori este întâlnit sub formă de compuși organici cu sulf sau sulfuri metalice, și foarte rar sub formă elementară. Trei aminoacizi (cisteină, cistină și metionină) și două vitamine (biotină și tiamină) sunt compuși organici cu sulf. De asemenea, mulți cofactori biochimici conțin sulf, precum glutationul sau tioredoxina. Legăturile disulfurice S-S, numite și „punți de sulf”, au un rol important în unele țesuturi animale, întrucât conferă putere mecanică. Astfel, proteina numită cheratină, este insolubilă și se găsește în epiteliul extern, păr, unghii, pene, etc.

Majoritatea cantității de sulf obținut la nivel mondial este folosit la nivel industrial pentru producția de acid sulfuric, unul dintre cei mai importanți compuși chimici utilizați. De asemenea, oxizii sulfului (dioxid de sulf, trioxid de sulf, etc) sunt componenți ai ploii acide. În cantități mai mici, sulful este folosit în chibrituri, insecticide și fungicide. Mulți compuși derivați ai acestuia sunt urât mirositori; de exemplu, mirosul de grepfrut sau cel de usturoi este datorat prezenței de compuși organici cu sulf în compoziția plantei. Hidrogenul sulfurat este compusul care are mirosul caracteristic de ouă clocite, dar este prezent și în alte procese biologice. Sulful este, de asemenea, componentul de bază în cadrul procesului de vulcanizare.

Istoric[modificare | modificare sursă]

Sulful este cunoscut din cele mai vechi timpuri. Chinezii și egiptenii (aproximativ 5000 î.Hr.) utilizau sulful ca înălbitor de textile, ca substanță medicamentoasă și ca dezinfectant. Era cunoscut încă din antichitate, fiind amintit în Iliada ca dezinfectant datorită obținerii de SO2.

Etimologie[modificare | modificare sursă]

Originea numelui „sulf” provine de la latinescul sulfur, iar termenul de „pucioasă” își regăsește originea în cuvântul latinesc puteosus.[1] Forma sulfur a fost preluată și în celelalte limbi romanice: soufre în franceză, zolfo în italiană (derivat de la solfo), azufre în spaniolă (de la açufre, anterior çufre), enxofre în portugheză (de la xofre). Denumirile din spaniolă și portugheză pentru sulf au ca și prefix articol arab, deși nu sunt cuvinte de origine arabă.[2] Se crede că rădăcina cuvântului în limba proto-indo-europeană este *swépl̥ (genitiv *sulplós), un derivat substantival pentru verbul *swelp 'a arde'. Aceasta este originea comună și pentru cuvintele din limbile germanice pentru sulf, de la care au evoluat la formele lor moderne: Schwefel în germană, zwavel în olandeză și svavel în suedeză.[3]

Structură atomică[modificare | modificare sursă]

Izotopi[modificare | modificare sursă]

Sulfului i se cunosc 25 de izotopi naturali, din care doar 4 sunt stabili: 32S (95.02%), 33S (0.75%), 34S (4.21%), și 36S (0.02%). Alți izotopi mai sus de 35S, sunt izotopi radioactivi. 35S are un timp de înjumătățire de 87 de zile. Când mineralele sulfuroase sunt precipitate, echilibrarea izotopică între solid-lichid poate provoca mici diferențe în valorile δS-34 de co-genetice minerale.

Proprietăți[modificare | modificare sursă]

Proprietăți fizice[modificare | modificare sursă]

Sulful este o substanță solidă, de culoare galbenă, insolubilă în apă, dar solubilă în sulfura de carbon, benzen, toluen sau petrol; acesta are densitate mai mare decât a apei, este rău conducător termic și electric (adică este un izolator), este casant (de duritate mică), și se prezintă sub două forme cristaline diferite (rombic, monoclinic). La încălzire, sulful se topește ușor și astfel devine vâscos, iar turnat în apă rece se transformă într-o masă elastică de culoare brună.

Masă atomică : 32,066 uam 1 mol= 32, 006 g

Proprietăți chimice[modificare | modificare sursă]

Procesul de ardere al sulfului, din care se obține dioxid de sulf, cu o flacără albastră (observată mai bine în întuneric).

Sulful este un element reactiv și va reacționa la temperatură ridicată cu majoritatea metalelor pentru a forma sulfuri, excepțiile fiind platina, iridiul și aurul. Cu mercurul reacționează la temperatura camerei cu formare de sulfură de mercur. Analog, poate reacționa și cu restul metalelor:

Cu semimetalele și nemetalele reacționează doar la temperaturi ridicate, iar singurele elemente din această categorie care nu reacționează cu sulful sunt telurul, azotul molecular și gazele nobile.[4]

Prin tratarea sulfului cu hidrogen se obține hidrogen sulfurat, denumit și acid sulfhidric. Dizolvat în apă, acesta are o tărie acidă medie:[5]

Prin reducerea sulfului elementar se obțin polisulfuri, care sunt compuse din catene de atomi închise prin centre de S:

Această reacție pune în vedere o proprietate distinctivă a sulfului, și anume faptul că acesta formează catene (mai mulți atomi se leagă între ei formând lanțuri). Protonarea acestor anioni polisulfuri conduce la formarea de polisulfani, H2Sx unde x = 2, 3 și 4.[6] În cele din urmă, reducerea totală conduce la formarea de sulfuri:

Sulful arde cu o flacără albastră, în urma reacției obținându-se dioxidul de sulf sau anhidrida acidului sulfuros, un gaz sufocant cu un miros foarte neplăcut. Dacă se continuă oxidarea, se obține oxidul superior, trioxidul de sulf, care este anhidrida acidului sulfuric:

Compuși[modificare | modificare sursă]

Numerele de oxidare ale sulfului variază de la -2 la +6. Fiind un element reactiv, acesta are o varietate de compuși anorganici, cât și câțiva compuși organici cu importanță biologică ridicată.

Radicali[modificare | modificare sursă]

Cei mai răspândiți radicali ai sulfului sunt sulfiții și sulfații. Prin adăugarea de apă la fiecare, se formează acidul sulfuric H2SO4 (sau vitriol) și acidul sulfuros H2SO3.

Săruri[modificare | modificare sursă]

Principalele săruri ale sulfului sunt sulfurile și sulfații.

Acizi[modificare | modificare sursă]

Sulful are mulți oxoacizi, printre care cei mai importanți sunt acidul sulfuric și acidul sulfuros.

Compuși organici[modificare | modificare sursă]

Sulful este întâlnit și în unele clase de compuși organici, printre care se numără: tiolii (sau mercaptanii), analogii cu sulf ai alcoolilor, tioeterii, sulfonele și acizii sulfonici.[7]

Compușii cu legături multiple de tipul carbon-sulf sunt rari, excepție făcând disulfura de carbon, un lichid incolor volatil, asemănător din punct de vedere structural cu dioxidul de carbon. Este folosit ca reactiv pentru fabricarea polimerului numit rayon și a altor compuși organici cu sulf. Spre deosebire de monoxidul de carbon, monosulfura de carbon este stabilă doar în formă de gaz foarte diluat, fiind răspândit între sisteme solare.[8]

Răspândire[modificare | modificare sursă]

Este un nemetal multivalent răspândit în natură (zăcăminte sau izvoare sulfuroase). Se găsește și ca element pur, dar mai ales în compuși chimici, de exemplu sulfați și sulfuri. Este un element esențial în fiziologia organismelor vii.

Structura moleculei de S8

Intră în componența a numeroase substanțe de interes economic: acid sulfuric, îngrășăminte, praf de pușcă, chibrituri, insecticide, fungicide, baterii, detergenți, cauciuc vulcanizat, etc. Prezintă o moleculă alcătuită din 8 atomi de sulf, dispuși într-o forma de coroană.

Alotropie[modificare | modificare sursă]

Sulful formează mai mult de 30 de alotropi, adică mai mulți decât oricare alt element. În afară de compusul S8, alții mai sunt cât de cât cunoscuți. Eliminând un atom de sulf de la acest compus, obținem un altul, S7, care are o culoare galbenă mai închisă. Analiza HPLC a "sulfului elementar", dezvăluie un amestec echilibrat de S8, S7 și S6. Compușii S12 și S18 și mai mari au fost elaborați deja.

Producere[modificare | modificare sursă]

Extracția sulfului (Texas, 1943)

Sulful poate obținut ori sub formă elementară, dintre care mai mult de 90% este folosit pentru obținerea de acid sulfuric, ori este obținut din oxizii de sulf prin prelucrarea minereurilor de sulf. O sursă importantă de sulf reprezintă mineralul numit pirită, folosit în acest scop din timpuri străvechi.[9] Sulful elementar este extras și comercializat la nivel mondial. Cei mai mari producători de sulf la nivel mondial sunt Statele Unite ale Americii, Canada, fostele state ale Uniunii Sovietice și Asia de Vest. Republica Populară Chineză este cel mai mare importator de sulf, urmată de Maroc și de Statele Unite. Canada este cel mai mare exportator, urmată de Rusia și de Arabia Saudită.[10]

Producția de sulf la nivel mondial în 2011 a fost de aproximativ 69 de milioane de tone (Mt), iar în jur de 15 state au contribuit cu mai mult de 1 Mt fiecare. Cele mai mare producții, cu mai mult de 5 milioane de tone pe an, au fost China (9,6), Statele Unite (8,8), Canada (7,1) și Rusia (7,1).[11]

Preparare în laborator[modificare | modificare sursă]

Producere la scară industriala[modificare | modificare sursă]

În prezent, la nivel industrial, sulful se obține din petrol, gaze naturale și alți combustibili fosili, din care este extras sub formă de hidrogen sulfurat. Compușii organici cu sulf, care reprezintă impuritățile nedorite în petrol, pot fi prelucrați printr-o reacție de hidrodesulfurare, în urma căreia se scindează legăturile C-S:[12][13]

R-S-R + 2 H2 → 2 RH + H2S

Hidrogenul sulfurat obținut, care se găsește, de asemenea, și în gazele naturale, este transformat în sulf elementar prin procesul Claus, un procedeu care implică oxidarea unei părți din hidrogenul sulfurat la dioxid de sulf, urmând ca acesta să reacționeze cu cantitatea rămasă pentru formarea sulfului:[12][13]

3 O2 + 2 H2S → 2 SO2 + 2 H2O
SO2 + 2 H2S → 3 S + 2 H2O

Utilizări[modificare | modificare sursă]

Sulful este indispensabil în fabricarea a numeroase substanțe și materiale:

Rolul elementului în biologie[modificare | modificare sursă]

Măsuri de protecție chimică[modificare | modificare sursă]

Note[modificare | modificare sursă]

Vezi și[modificare | modificare sursă]

Legături externe[modificare | modificare sursă]

Bibliografie[modificare | modificare sursă]

  • Edith Beral și Mihai Zapan, Chimie anorganică
  • Lucia Pârvan și Constanța Niculescu, Sinteze de chimie

Referințe[modificare | modificare sursă]

  1. ^ Sulf” la DEX online Accesat pe 14 octombrie 2016
  2. ^ "sulphur". Oxford English Dictionary. Oxford University Press. 2nd ed. 1989.
  3. ^ Mallory & Adams (2006) The Oxford introduction to Proto-Indo-European and the Proto-Indo-European world, Oxford University Press
  4. ^ Egon Wiberg; Nils Wiberg (2001). Inorganic Chemistry. Academic Press. pp. 513–. ISBN 978-0-12-352651-9. https://books.google.com/books?id=Mtth5g59dEIC&pg=PA513 
  5. ^ Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
  6. ^ Handbook of Preparative Inorganic Chemistry, 2nd ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 421.
  7. ^ Cremlyn R. J.; "An Introduction to Organosulfur Chemistry" John Wiley and Sons: Chichester (1996). ISBN 0-471-95512-4.
  8. ^ Wilson, R. W.; Penzias, A. A.; Wannier, P. G.; Linke, R. A. (15 martie 1976). „Isotopic abundances in interstellar carbon monosulfide”. Astrophysical Journal 204: L135–L137. doi:10.1086/182072. Bibcode1976ApJ...204L.135W. 
  9. ^ Riegel, Emil; Kent, James (2007). Kent and Riegel's handbook of industrial chemistry and biotechnology. 1. New York: Springer. p. 1171. ISBN 978-0-387-27842-1. OCLC 74650396 
  10. ^ An Introduction to Sulphur. de la Institutul Sulfului; accesat pe 4 noiembrie 2016
  11. ^ Apodaca, Lori E. (2012) Sulfur. Mineral Commodity Summaries. USGS
  12. ^ a b Eow, John S. (2002). „Recovery of sulfur from sour acid gas: A review of the technology”. Environmental Progress 21 (3): 143–162. doi:10.1002/ep.670210312. 
  13. ^ a b Schreiner, Bernhard (2008). „Der Claus-Prozess. Reich an Jahren und bedeutender denn je”. Chemie in unserer Zeit 42 (6): 378–392. doi:10.1002/ciuz.200800461.