Dodecaedru disdiakis

De la Wikipedia, enciclopedia liberă
Sari la navigare Sari la căutare
Dodecaedru disdiakis
Disdyakisdodecahedron.jpg
(animație și model 3D)
Descriere
TipPoliedru Catalan
Fețe48 triunghiuri scalene
Laturi (muchii)72
Vârfuri26 (6 + 2 + 18)
χ2
Configurația fețeiV.4.6.8
Simbol ConwaymC
Diagramă CoxeterCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Grup de simetrieOh, B3, [4,3], (*432)
Grup de rotațieO, [4,3]+, (432)
Arie≈ 32,067 a2   (a = latura mică)
Volum≈ 16,289 a3   (a = latura mică)
Unghi diedru155° 4' 56" =
Poliedru dualCuboctaedru trunchiat
ProprietățiPoliedru convex, tranzitiv pe fețe
Desfășurată
Disdyakis 12 net.svg
Dual: Cuboctaedru trunchiat

În geometrie un dodecaedru disdiakis este un poliedru Catalan cu 48 de fețe. Fiecare poliedru Catalan este dualul unui poliedru arhimedic. Dualul tetraedrului disdiakis este cuboctaedrul trunchiat. Este tranzitiv pe fețe, însă fețele sale sunt poligoane neregulate. Seamănă cu un dodecaedru rombic. Înlocuirea fiecărei fețe a dodecaedrului rombic cu o piramidă plată creează un poliedru care arată aproape ca dodecaedrul disdiakis și este topologic echivalent cu acesta. Formal, dodecaedrul disdiakis este un Kleetop al dodecaedrului rombic. Desfășurata piramidei cubotaedrice are aceeași topologie.

Proiectat într-o sferă, laturile unui dodecaedru disdiakis definesc 9 cercuri mari. Buckminster Fuller a folosit aceste 9 cercuri mari, împreună cu alte 12 și alte 4 din alte două poliedre pentru a-și defini cele 25 de cercuri mari ale octaedrului sferic.

Simetrie[modificare | modificare sursă]

Are simetrie octaedrică Oh. Laturile sale definesc planele de reflexie ale simetriei. Poate fi văzut și ca triangulare a colțului și a mijlocului laturii cubului și octaedrului regulat, și a dodecaedrului rombic.

Disdyakis 12.pngDodecaedru
disdiakis
Disdyakis 12 in deltoidal 24.png
Icositetraedru
deltoidal
Disdyakis 12 in rhombic 12.png
Dodecaedru
rombic
Disdyakis 12 in Platonic 6.png
Cub
Disdyakis 12 in Platonic 8.png
Octaedru

Laturile unui dodecaedru disdiakis sferic se află pe 9 cercuri mari. Trei dintre ele formează un octaedru sferic (gri în imaginile de mai jos). Restul de șase formează trei hosoedre pătrate (roșu, verde și albastru în imaginile de mai jos). Toate corespund planelor de oglindire — primul în simetrie diedrală [2,2], iar cel de-al doilea în simetrie tetraedrică [3,3].

Coordonate carteziene[modificare | modificare sursă]

Fie a = 1/(1 + 22), b = 1/(2 + 32) și c = 1/27 + 182.
Atunci coordonatele carteziene pentru vârfurile unui dodecaedru disdiakis centrat în origine sunt:

  • toate permutările lui (±a, 0, 0)
  • toate permutările lui (±b, ±b, 0)
  • (±c, ±c, ±c).

Aceste numere au la bază cuboctaedrul dublu trunchiat cu lungimea laturii de 2.

Dimensiuni[modificare | modificare sursă]

Dacă laturile sale mici au lungimea a, aria și volumul acesteia sunt

Fețele sunt triunghiuri scalene. Unghiurile lor sunt , și .

Proiecții ortogonale[modificare | modificare sursă]

Cuboctaedrul trunchiat și dualul său, dodecaedrul disdiyakis pot fi reprezentate într-un număr de orientări proiective ortogonale simetrice. Între un poliedru și dualul său, vârfurile și fețele sunt interschimbate, iar laturile sunt perpendiculare.

Simetrie
proiectivă
[4] [3] [2] [2] [2] [2] [2]+
Imagine Dual cube t012 B2.png Dual cube t012.png Dual cube t012 f4.png Dual cube t012 e46.png Dual cube t012 e48.png Dual cube t012 e68.png Dual cube t012 v.png
Imagine
dual
3-cube t012 B2.svg 3-cube t012.svg Cube t012 f4.png Cube t012 e46.png Cube t012 e48.png Cube t012 e68.png Cube t012 v.png

Poliedre și pavări înrudite[modificare | modificare sursă]

Conway polyhedron m3O.png Conway polyhedron m3C.png
Poliedrele similare cu dodecaedrul disdiakis sunt duale cu octaedrul și cubul „papion”, conținând perechi suplimentare de fețe triunghiulare.[1]

Dodecaedrul disdiakis face parte dintr-o familie de duale ale poliedrelor uniforme legate de cub și octaedrul regulat.

Poliedre octaedrice uniforme    
Simetrie: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png sau CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png sau CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Dualele celor de mai sus
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg


Este un poliedru într-o secvență definită de configurația feței V4.6.2n. Acest grup este particular pentru că toate au un număr par de laturi la vârfuri și formează plane care divid poliedrele în două părți egale și continuă în planul hiperbolic pentru orice „n” ≥ 7.

Cu un număr par de fețe la fiecare vârf, aceste poliedre și pavări pot fi afișate colorate alternativ cu două culori, astfel încât toate fețele adiacente să aibă culori diferite.

Fiecare față a acestor figuri corespunde domeniul fundamental al unui grup de simetrie de ordinul 2,3,n oglindiri în fiecare vârf al feței triunghiulare.

Variante ale pavărilor trunchiate cu simetrie *n32: t{n,3}
Smetrie
*n32
[n,3]
Sferice Euclid. Hiperb. compacte Paracomp. Hiperbolice necompacte
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
[12i,3] [9i,3] [6i,3]
Figuri
trunchiate
Spherical triangular prism.png Uniform tiling 332-t01-1-.png Uniform tiling 432-t01.png Uniform tiling 532-t01.png Uniform tiling 63-t01.svg Truncated heptagonal tiling.svg H2-8-3-trunc-dual.svg H2 tiling 23i-3.png H2 tiling 23j12-3.png H2 tiling 23j9-3.png H2 tiling 23j6-3.png
Schläfli t{2,3} t{3,3} t{4,3} t{5,3} t{6,3} t{7,3} t{8,3} t{∞,3} t{12i,3} t{9i,3} t{6i,3}
Figuri
triakis
Spherical trigonal bipyramid.png Spherical triakis tetrahedron.png Spherical triakis octahedron.png Spherical triakis icosahedron.png Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Order-7 triakis triangular tiling.svg H2-8-3-kis-primal.svg Ord-infin triakis triang til.png
Config. V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14 V3.16.16 V3.∞.∞
Variante de simetrii *n42 ale pavărilor trunchiate: n.8.8
Simetrie
*n42
[n,4]
Sferice] Euclidiană Compacte hiperbolice Paracompactă
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Figuri
trunchiate
Octagonal dihedron.svg Uniform tiling 432-t01.png Uniform tiling 44-t12.svg H2-5-4-trunc-primal.svg H2 tiling 246-6.png H2 tiling 247-6.png H2 tiling 248-6.png H2 tiling 24i-6.png
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 ∞.8.8
Figuri
n-kis
Spherical octagonal hosohedron.png Spherical triakis octahedron.png 1-uniform 2 dual.svg H2-5-4-kis-dual.svg Order4 hexakis hexagonal til.png Order4 heptakis heptagonal til.png H2-8-3-primal.svg Ord4 apeirokis apeirogonal til.png
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V∞.8.8

Note[modificare | modificare sursă]

Bibliografie[modificare | modificare sursă]

  • en Williams, Robert (). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.  (Section 3-9)
  • en John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss (2008), The Symmetries of Things, ISBN: 978-1-56881-220-5 [1] (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 285, kisRhombic dodecahedron)

Legături externe[modificare | modificare sursă]