Cuboctaedru trunchiat

De la Wikipedia, enciclopedia liberă
Sari la navigare Sari la căutare
Cuboctaedru trunchiat
Truncatedcuboctahedron.jpg
(animație și model 3D)
Descriere
TipPoliedru arhimedic
(Poliedru uniform)
Fețe26 (12 pătrate, 8 hexagoane, 6 octogoane)
Laturi (muchii)72
Vârfuri48
χ2
Configurația vârfului4.6.8
Simbol Wythoff2 3 4 |
Simbol Schläflitr{4,3} sau
t0,1,2{4,3}
Simbol ConwaybC sau taC
Diagramă CoxeterCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Grup de simetrieOh, B3, [4,3], (*432), ordin 48
Grup de rotațieO, [4,3]+, (432), ordin 24
Arie≈ 61,755 a2   (a = latura)
Volum≈ 41,799 a3   (a = latura)
Unghi diedru4-6: arccos(−6/3) = 144° 44′ 08″
4-8: arccos(−2/3) = 135°
6-8: arccos(−3/3) = 125°15′51″
Poliedru dualDodecaedru disdiakis
ProprietățiPoliedru semiregulat (zonoedru) convex cu fețe poligoane regulate, tranzitiv pe vârfuri
Figura vârfului
Polyhedron great rhombi 6-8 vertfig.svg
Desfășurată
Polyhedron great rhombi 6-8 net.svg

În geometrie cuboctaedrul trunchiat este un poliedru arhimedic. Are 26 de fețe regulate (12 pătrate, 8 fețe hexagonale și 6 octogonale), 72 de laturi și 48 de vârfuri. Deoarece fiecare dintre fețele sale are simetrie față de centru (echivalent, simetrie de rotație de 180°), cuboctaedrul trunchiat este un zonoedru. Împreună cu prisma octogonală, cuboctaedrul trunchiat poate tesela spațiul ca fagure cubic omnitrunchiat.

Are indicele de poliedru uniform U11,[1] indicele Coxeter C23 și indicele Wenninger W15.

Nume alternative[modificare | modificare sursă]

Cuboctaedrul,
trunchierea sa

Numele de cuboctaedrul trunchiat i-a fost dat de Johannes Kepler. Aceste nume poate crea confuzii, deoarece actual prin trunchiere un cuboctaedru are dreptunghiuri în locul pătratelor, însă acel poliedru neuniform este topologic echivalent cu poliedrul arhimedic numit astfel (nu tocmai riguros). Alte nume sunt:

Există un poliedru uniform neconvex cu un nume asemănător: marele rombicuboctaedru neconvex.

Coordonate carteziene[modificare | modificare sursă]

Coordonatele carteziene ale vârfurilor unui cuboctaedru trunchiat având lungimea laturii 2 și centrat în origine sunt toate permutările:

.

Arie și volum[modificare | modificare sursă]

Aria A și volumul V ale cuboctaedrului trunchiat cu lungimea laturii a sunt:

Divizare[modificare | modificare sursă]

Small in great rhombi 6-8, davinci small with cubes.png Small in great rhombi 6-8, davinci.png

Cuboctaedrul trunchiat este anvelopa convexă a unui rombicuboctaedru cu cuburi deasupra celor 12 pătrate cu axe de simetrie cu două poziții. Restul spațiului său poate fi divizat în 6 cupole pătrate sub octogoane și 8 cupole triunghiulare sub hexagoane.

Un cuboctaedru trunchiat divizat poate crea un toroid Stewart de genul 5, 7 sau 11 prin îndepărtarea rombicuboctaedrului central și fie a celor 6 cupole pătrate, fie a celor 8 cupole triunghiulare sau, respectiv, a celor 12 cuburi. De asemenea, mulți alți toroizi cu simetrie inferioară pot fi construiți prin îndepărtarea rombicuboctaedrului central și a unui subset al celorlalte componente de divizare. De exemplu, îndepărtarea a 4 dintre cupolele triunghiulare creează un toroid de genul 3; dacă aceste cupole sunt alese corespunzător, atunci acest toroid are simetrie tetraedrică.[3][4]

Colorare ca poliedru uniform[modificare | modificare sursă]

Colorarea ca poliedru uniform se face cu câte o culoare pentru fiecare tip de față.

Proiecții ortogonale[modificare | modificare sursă]

Cuboctaedrul trunchiat are două proiecții ortogonale speciale în planele Coxeter A2 și B2 cu simetriile proiecțiilor [6] și [8], iar numeroase simetrii [2] pot fi construite în diferite plane de proiecție în raport cu elementele poliedrului.

Proiecții ortogonale
Centrate pe Vârf Latura
4-6
Latura
4-8
Latura
6-8
Normala
feței 4-6
Imagine Cube t012 v.png Cube t012 e46.png Cube t012 e48.png Cube t012 e68.png Cube t012 f46.png
Simetria
proiecției
[2]+ [2] [2] [2] [2]
Centrate pe Normala feței
pătrate
Normala feței
octogonale
Fața
pătrată
Fața
hexagonală
Fața
octogonală
Imagine Cube t012 af4.png Cube t012 af8.png Cube t012 f4.png 3-cube t012.svg 3-cube t012 B2.svg
Simetria
proiecției
[2] [2] [2] [6] [4]

Pavări sferice[modificare | modificare sursă]

Cuboctaedrul trunchiat poate fi reprezentat și ca o pavare sferică și proiectat pe plan printr-o proiecție stereografică. Această proiecție este conformă, păstrând unghiurile, dar nu și ariile sau lungimile. Liniile drepte pe sferă sunt proiectate pe plan ca arce de cerc.

Uniform tiling 432-t012.png Truncated cuboctahedron stereographic projection square.png Truncated cuboctahedron stereographic projection hexagon.png Truncated cuboctahedron stereographic projection octagon.png
Proiecție ortogonală centrată pe pătrat centrată pe hexagon centrată pe octogon
Proiecții stereografice

Grupul octaedric complet[modificare | modificare sursă]

Dual: Dodecaedru disdiakis
Full octahedral group elements in truncated cuboctahedron; JF.png

La fel ca multe alte poliedre, octaedrul trunchiat are o simetrie octaedrică completă, dar relația sa cu grupul octaedric complet este mai complexă decât aceasta: cele 48 de vârfuri corespund elementelor grupului și fiecare față a dualului său este un domeniu fundamental al grupului.

Imaginea din dreapta arată cele 48 de permutări din grup aplicate unui obiect. Cele 24 de elemente „F” de culoare deschisă sunt rotații, iar cele de culoare închisă sunt reflexiile lor.

Laturile poliedrului corespund celor 9 reflexii din grup:

  • Cele dintre octogoane și pătrate corespund celor 3 reflexii dintre octogoanele opuse.
  • Laturile hexagonale corespund celor 6 reflexii dintre pătratele opuse.
  • (Nu există reflexii între hexagoanele opuse.)

Subgrupurile corespund poliedrelor care au în comun vârfurile respective cu cele ale octaedrului trunchiat.
De exemplu, cele 3 subgrupuri cu 24 de elemente corespund unui cub snub neuniform cu simetrie octaedrică chirală, unui rombicuboctaedru neuniform cu simetrie piritoedrică (octaedrul snub cantic) și unui octaedru trunchiat neuniform cu simetrie tetraedrică completă. Subgrupul unic cu 12 elemente este grupul altern A4. Acesta corespunde unui icosaedru neuniform cu simetrie tetraedrică chirală.

Subgrupuri și poliedrele corespondente
Cuboctaedru trunchiat
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{4,3}
Cub snub
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{4,3}
Rombicuboctaedru
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
s2{3,4}
Octaedru trunchiat
CDel node h.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h1,2{4,3}
Icosaedru
CDel node h.pngCDel 2.pngCDel 4.pngCDel 2.pngCDel node h.pngCDel 3.pngCDel node h.png
[4,3]
Octaedrică completă
[4,3]+
Octaedrică chirală
[4,3+]
Simetrie piritoedrică
[1+,4,3] = [3,3]
Tetraedrică completă
[1+,4,3+] = [3,3]+
Tetraedrică chirală
Polyhedron great rhombi 6-8 max.png Polyhedron great rhombi 6-8 subsolid snub right maxmatch.png Polyhedron great rhombi 6-8 subsolid pyritohedral maxmatch.png Polyhedron great rhombi 6-8 subsolid tetrahedral maxmatch.png Polyhedron great rhombi 6-8 subsolid 20 maxmatch.png
toate 48 vârfuri 24 vârfuri 12 vârfuri

Poliedre înrudite[modificare | modificare sursă]

Conway polyhedron b3O.png Conway polyhedron b3C.png
Tetraedrul și cubul „papion” conțin două fețe trapezoidale în locul fiecărui pătrat.[5]

Cuboctaedrul trunchiat face parte dintr-o familie de poliedre uniforme înrudite cu cubul și octaedrul regulat.

Poliedre octaedrice uniforme    
Simetrie: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png sau CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png sau CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Dualele celor de mai sus
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg


Acest poliedru face parte dintr-o secvență de modele uniforme cu configurația vârfului (4.6.2p) și diagrama Coxeter–Dynkin CDel node 1.pngCDel p.pngCDel node 1.pngCDel 3.pngCDel node 1.png. Pentru p < 6, membrii secvenței sunt poliedre omnitrunchiate (zonoedre), prezentate mai jos ca pavări sferice. Pentru p < 6, acestea sunt pavări ale planului hiperbolic, începând cu pavare triheptagonală trunchiată.

Variante de pavări omnitrunchiate cu simetrie *n32: 4.6.2n
Simetrie
*n32
[n,3]
Sferice Euclid. Hiperb. compacte Paraco. Hiperbolice necompacte
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*∞32
[∞,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Imagini Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png Truncated triheptagonal tiling.svg H2-8-3-omnitruncated.svg H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
Duale Spherical hexagonal bipyramid.png Spherical tetrakis hexahedron.png Spherical disdyakis dodecahedron.png Spherical disdyakis triacontahedron.png Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞ V4.6.24i V4.6.18i V4.6.12i V4.6.6i
Variante de pavări omnitrunchiate cu simetrie *n42: 4.8.2n
Simetrie
*n42
[n,3]
Sferice Euclidiană Hiperbolice compacte Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Figuri
omnitrunchiate
Spherical octagonal prism2.png
4.8.4
Uniform tiling 432-t012.png
4.8.6
Uniform tiling 44-t012.png
4.8.8
H2-5-4-omnitruncated.svg
4.8.10
H2 tiling 246-7.png
4.8.12
H2 tiling 247-7.png
4.8.14
H2 tiling 248-7.png
4.8.16
H2 tiling 24i-7.png
4.8.∞
Duale
omnitrunchiate
Spherical octagonal bipyramid2.png
V4.8.4
Spherical disdyakis dodecahedron.png
V4.8.6
1-uniform 2 dual.svg
V4.8.8
H2-5-4-kisrhombille.svg
V4.8.10
Hyperbolic domains 642.png
V4.8.12
Hyperbolic domains 742.png
V4.8.14
Hyperbolic domains 842.png
V4.8.16
H2checkers 24i.png
V4.8.∞

Este primul dintr-o serie de hipercuburi cantitrunchiate.

Poligoane Petrie
3-cube t012.svg4-cube t012 B2.svg 4-cube t012.svg4-cube t012 A3.svg 5-cube t012.svg5-cube t012 A3.svg 6-cube t012.svg6-cube t012 A5.svg 7-cube t012.svg7-cube t012 A5.svg 8-cube t012.svg8-cube t012 A7.svg
Cuboctaedru trunchiat Tesseract cantitrunchiat 5-cub cantitrunchiat 6-cub cantitrunchiat 7-cub cantitrunchiat 8-cub cantitrunchiat
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Note[modificare | modificare sursă]

  1. ^ en Eric W. Weisstein, Uniform Polyhedron la MathWorld.
  2. ^ en Wenninger, Magnus (), Polyhedron Models, Cambridge University Press, ISBN 978-0-521-09859-5, MR 0467493  (Model 15, p. 29)
  3. ^ en B. M. Stewart (1970), Adventures Among the Toroids, ISBN: 978-0-686-11936-4
  4. ^ en Doskey, Alex. „Adventures Among the Toroids - Chapter 5 - Simplest (R)(A)(Q)(T) Toroids of genus p=1”. www.doskey.com. 
  5. ^ en Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons Craig S. Kaplan

Bibliografie[modificare | modificare sursă]

  • en Cromwell, P. (). Polyhedra. United Kingdom: Cambridge. pp. 79–86 Archimedean solids. ISBN 0-521-55432-2. 

Legături externe[modificare | modificare sursă]