Cub trunchiat

De la Wikipedia, enciclopedia liberă
Sari la navigare Sari la căutare
Cub trunchiat
Truncatedhexahedron.jpg
(animație și model 3D)
Descriere
TipPoliedru arhimedic
Fețe14 (8 triunghiuri, 6 octogoane)
Laturi (muchii)36
Vârfuri24
χ2
Configurația vârfului3.8.8
Simbol Wythoff2 3 | 4
Simbol Schläflit{4,3}
t0,1{4,3}
Simbol ConwaytC
Diagramă CoxeterCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Grup de simetrieOh, B3, [4,3], (*432), ordin 48
Grup de rotațieO, [4,3]+, (432), ordin 24
Arie≈ 32,435 a2   (a = latura)
Volum≈ 13,600 a3   (a = latura)
Unghi diedru3-8: 125° 15′ 51″
8-8: 90°
Poliedru dualOctaedru triakis
ProprietățiPoliedru semiregulat, convex cu fețe poligoane regulate, tranzitiv pe vârfuri
Figura vârfului
Polyhedron truncated 6 vertfig.svg
Desfășurată
Polyhedron truncated 6 net.svg
Dual:Octaedru triakis

În geometrie cubul trunchiat este un poliedru arhimedic. Are 6 fețe octogonale regulate, 8 fețe triunghiulare echilaterale, 24 de vârfuri și 36 de laturi. Poate fi construit prin trunchierea tuturor celor 8 vârfuri ale unui cub la o treime din lungimea laturii inițiale.

Dacă cubul trunchiat are lungimea muchiei 1, dualul său, octaedrul triakis are laturi de două feluri, cu lungimile 2 și 2 + 2.

Are indicele de poliedru uniform U09,[1] indicele Coxeter C21 și indicele Wenninger W8.

Arie și volum[modificare | modificare sursă]

Aria A și volumul V ale unui cub trunchiat cu lungimea muchiei a sunt:

Proiecții ortogonale[modificare | modificare sursă]

Cubul trunchiat are cinci proiecții ortogonale, centrate pe un vârf, cu două tipuri de laturi și două tipuri de fețe: triunghiuri și octogoane. Ultimele două corespund cu planele Coxeter B2 și A2.

Proiecții ortogonale
Centrată
pe
Vârf Latura
3-8
Latura
8-8
Fața
octogon
Fața
triunghi
Corp
Polyhedron truncated 6 from blue max.png
Polyhedron truncated 6 from red max.png Polyhedron truncated 6 from yellow max.png
Cadru
de sârmă
Cube t01 v.png Cube t01 e38.png Cube t01 e88.png 3-cube t01 B2.svg 3-cube t01.svg
Dual Dual truncated cube t01 v.png Dual truncated cube t01 e8.png Dual truncated cube t01 e88.png Dual truncated cube t01 B2.png Dual truncated cube t01.png
Simetrie
proiectivă
[2] [2] [2] [4] [6]

Pavare sferică[modificare | modificare sursă]

Cubul trunchiat poate fi reprezentat și ca o pavare sferică și proiectat pe plan printr-o proiecție stereografică. Această proiecție este conformă, păstrând unghiurile, dar nu ariile sau lungimile. Liniile drepte pe sferă sunt proiectate în plan ca arce de cerc.

Uniform tiling 432-t01.png Truncated cube stereographic projection octagon.png
centrată pe octogon
Truncated cube stereographic projection triangle.png
centrată pe triunghi
Proiecție ortogonală Proiecții stereografice

Coordonate carteziene[modificare | modificare sursă]

Un cub trunchiat cu fețele sale octogonale piritoedrice divizat prin vârfuri din centrul fețelor în triunghiuri și pentagoane, creând topologic un icosidodecaedru

Coordonatele carteziene ale vârfurilor unui cub trunchiat centrat în origine cu lungimea laturii 2ξ sunt toate permutările lui

ξ, ±1, ±1),

unde ξ = 2 − 1.

În afară de valoarea de mai sus, parametrul ξ poate lua valori între ±1. Valoarea 1 produce un cub, 0 produce un cuboctaedru, iar valorile negative produc fețe octagramice care se autointersectează.

Truncated cube sequence.png

Dacă porțiunile autointersectate ale octagramelor sunt îndepărtate, lăsând pătratele și trunchiind triunghiurile în hexagoane, se produc octaedre trunchiate, iar secvența se termină cu pătratele centrale reduse la un punct și creând un octaedru.

Divizare[modificare | modificare sursă]

Imagine indisponibilă Imagine indisponibilă
Cub trunchiat divizat, vedere expandată
Cub trunchiat excavat

Cubul trunchiat poate fi divizat într-un cub central, cu șase cupole pătrate în jurul fiecărei fețe a cubului și 8 tetraedre regulate în colțuri. Această divizare poate fi observată și în interiorul fagurelui cubic runcic, cu celule cubice, tetraedrice și rombicuboctaedrice.

Această divizare poate fi folosită pentru a crea un toroid Stewart cu toate fețele regulate prin îndepărtarea a două cupole pătrate și a cubului central. Acest cub excavat are 16 triunghiuri, 12 pătrate și 4 octogoane.[2][3]

Dispunerea vârfurilor[modificare | modificare sursă]

Are aceeași dispunere a vârfurilor cu trei poliedre uniforme neconvexe:

Truncated hexahedron.png
Cub trunchiat
Uniform great rhombicuboctahedron.png
Marele rombicuboctaedru neconvex
Great cubicuboctahedron.png
Marele cubicuboctaedru
Great rhombihexahedron.png
Marele rombicuboctaedru

Poliedre înrudite[modificare | modificare sursă]

Cubul trunchiat este legat de alte poliedre și pavări prin simetrie.

Cubul trunchiat face parte dintr-o familie de poliedre uniforme înrudite cu cubul și octaedrul regulat.

Poliedre octaedrice uniforme    
Simetrie: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png sau CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png sau CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Dualele celor de mai sus
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg


Variante de simetrii[modificare | modificare sursă]

Acest poliedru este înrudit topologic ca parte a secvenței de poliedre trunchiate uniforme cu configurațiile vârfului (3.2n.2n) și [n,3] cu simetriile din grupul Coxeter și o serie de pavări n.8.8.

Variante ale pavărilor trunchiate cu simetrie *n32: t{n,3}
Smetrie
*n32
[n,3]
Sferice Euclid. Hiperb. compacte Paracomp. Hiperbolice necompacte
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
[12i,3] [9i,3] [6i,3]
Figuri
trunchiate
Spherical triangular prism.png Uniform tiling 332-t01-1-.png Uniform tiling 432-t01.png Uniform tiling 532-t01.png Uniform tiling 63-t01.svg Truncated heptagonal tiling.svg H2-8-3-trunc-dual.svg H2 tiling 23i-3.png H2 tiling 23j12-3.png H2 tiling 23j9-3.png H2 tiling 23j6-3.png
Schläfli t{2,3} t{3,3} t{4,3} t{5,3} t{6,3} t{7,3} t{8,3} t{∞,3} t{12i,3} t{9i,3} t{6i,3}
Figuri
triakis
Spherical trigonal bipyramid.png Spherical triakis tetrahedron.png Spherical triakis octahedron.png Spherical triakis icosahedron.png Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Order-7 triakis triangular tiling.svg H2-8-3-kis-primal.svg Ord-infin triakis triang til.png
Config. V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14 V3.16.16 V3.∞.∞
Variante de simetrii *n42 ale pavărilor trunchiate: n.8.8
Simetrie
*n42
[n,4]
Sferice] Euclidiană Compacte hiperbolice Paracompactă
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Figuri
trunchiate
Octagonal dihedron.svg Uniform tiling 432-t01.png Uniform tiling 44-t12.svg H2-5-4-trunc-primal.svg H2 tiling 246-6.png H2 tiling 247-6.png H2 tiling 248-6.png H2 tiling 24i-6.png
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 ∞.8.8
Figuri
n-kis
Spherical octagonal hosohedron.png Spherical triakis octahedron.png 1-uniform 2 dual.svg H2-5-4-kis-dual.svg Order4 hexakis hexagonal til.png Order4 heptakis heptagonal til.png H2-8-3-primal.svg Ord4 apeirokis apeirogonal til.png
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V∞.8.8

Trunchieri alternate[modificare | modificare sursă]

Tetraedru, trunchierea sa pe laturi și cub trunchiat

Trunchierea alternată a vârfurilor cubului dă tetraedrul șanfrenat⁠(d), adică trunchierea laturilor tetraedrului.

Trapezoedrul triunghiular trunchiat este un alt poliedru care poate fi format prin trunchierea laturii cubului.

Politopuri înrudite[modificare | modificare sursă]

Cubul trunchiat este cel de-al doilea în secvența hipercuburilor trunchiate:

Hipercuburi trunchiate
Imagine Regular polygon 8 annotated.svg 3-cube t01.svgTruncated hexahedron.png 4-cube t01.svgSchlegel half-solid truncated tesseract.png 5-cube t01.svg5-cube t01 A3.svg 6-cube t01.svg6-cube t01 A5.svg 7-cube t01.svg7-cube t01 A5.svg 8-cube t01.svg8-cube t01 A7.svg ...
Nume Pătrat
trunchiat
Cub
trunchiat
Tesseract
trunchiat
5-cub
trunchiat
6-cub
trunchiat
7-cub
trunchiat
8-cub
trunchiat
Diagramă Coxeter CDel node 1.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Figura
vârfului
( )v( ) Truncated cube vertfig.png
( )v{ }
Truncated 8-cell verf.png
( )v{3}
Truncated 5-cube verf.png
( )v{3,3}
( )v{3,3,3} ( )v{3,3,3,3} ( )v{3,3,3,3,3}

Note[modificare | modificare sursă]

  1. ^ en Eric W. Weisstein, Uniform Polyhedron la MathWorld.
  2. ^ en B.M. Stewart, Adventures Among the Toroids (1970) ISBN: 978-0-686-11936-4
  3. ^ en „Adventures Among the Toroids - Chapter 5 - Simplest (R)(A)(Q)(T) Toroids of genus p=1”. 

Bibliografie[modificare | modificare sursă]

  • en Robert Williams (1979), The Geometrical Foundation of Natural Structure: A Source Book of Design, Dover Publications Inc., ISBN: 0-486-23729-X. (Section 3-9)
  • en Cromwell, P. Polyhedra, CUP hbk (1997), pbk. (1999). Ch.2 p. 79-86 Archimedean solids

Legături externe[modificare | modificare sursă]