Dodecaedru rombic

De la Wikipedia, enciclopedia liberă
Dodecaedru rombic
Rhombicdodecahedron.jpg
(animație și model 3D)
Descriere
TipPoliedru Catalan
Fețe12 romburi
Laturi (muchii)24
Vârfuri14
χ2
Configurația fețeiV3.4.3.4
Simbol ConwayjC
Diagramă CoxeterCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png
CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png
Grup de simetrieOh, B3, [4,3], (*432)
Grup de rotațieO, [4,3]+, (432)
Arie≈ 11,314 a2   (a = latura)
Volum≈   3,079 a3   (a = latura)
Unghi diedru120°
Poliedru dualCuboctaedru
ProprietățiPoliedru convex, tranzitiv pe fețe și pe laturi, paraleloedru, zonoedru
Desfășurată
Rhombicdodecahedron net.svg
Dual: Cuboctaedru

În geometrie un dodecaedru rombic este un poliedru Catalan cu 12 fețe congruente. Fiecare poliedru Catalan este dualul unui poliedru arhimedic. Este tranzitiv pe fețe și pe laturi

Proprietăți[modificare | modificare sursă]

Dodecaedrul rombic este un zonoedru. Dualul tetraedrului triakis este cuboctaedrul. Lungimea diagonalei lungi a feței este exact de 2 ori lungimea diagonalei scurte; astfel, unghiurile ascuțite de pe fiecare față măsoară arccos(1/3), adică aproximativ 70,53°.

Fiind dualul unui poliedru arhimedic, dodecaedrul rombic este tranzitiv pe fețe, adică grupul de simetrie al poliedrului acționează tranzitiv pe setul său de fețe. În termeni elementari, aceasta înseamnă că pentru oricare două fețe A și B, există o rotație sau reflexie a poliedrului care ocupă aceeași regiune a spațiului când fața A este aplicată pe fața B.

Dodecaedrul rombic poate fi perceput ca anvelopa convexă a reuniunii vârfurilor unui cub și ale unui octaedru. Cele 6 vârfuri unde se întâlnesc 4 romburi corespund vârfurilor octaedrului, în timp ce cele 8 vârfuri unde se întâlnesc 3 romburi corespund vârfurilor cubului.

Dodecaedrul rombic este unul dintre cele nouă poliedre convexe tranzitiv pe laturi, celelalte fiind cele cinci poliedre platonice, cuboctaedrul, icosidodecaedrul și triacontaedrul rombic.

Dodecaedrul rombic poate fi folosit pentru a tesela spațiu tridimensional: poate fi aranjat pentru a umple un spațiu tridimensional, la fel ca hexagonul umple un plan.

Acest poliedru într-o teselare de umplere a spațiului poate fi perceput ca o teselare Voronoi⁠(d) a unei rețele cubice cu fețe centrate.

Un dodecaedru rombic poate fi divizat în 4 trapezoedre trigonale obtuze situate în jurul centrului său. Aceste romboedre sunt celulele unui fagure trapezoedric trigonal.

Dimensiuni[modificare | modificare sursă]

Se notează cu a lungimea laturii dodecaedrului rombic.

Raza sferei încrise (tangentă la toate fețele dodecaedrului rombic) este[1]

Raza sferei mediane este[2]

Raza sferei care trece prin cele 6 vârfuri de ordinul 4 (unde se întâlnesc câte patru fețe), dar nu și prin cele 8 vârfuri de ordinul 3 este[3]

Raza sferei care trece prin cele 8 vârfuri de ordinul 3 este exact de lungimea laturilor

Aria și volumul[modificare | modificare sursă]

Dacă laturile au lungimea a, aria și volumul dodecaedrului rombic sunt

Coordonate carteziene[modificare | modificare sursă]

Pyritohedron animation.gif
Variații piritoedrice între cub și dodecaedru rombic
R1-R3.gif
Expandare a dodecaedrului rombic

Cele opt vârfuri în care trei fețe se întâlnesc la unghiurile lor obtuze au coordonatele carteziene:

(±1, ±1, ±1)

Coordonatele celor șase vârfuri unde patru fețe se întâlnesc la unghiurile lor ascuțite sunt:

(±2, 0, 0), (0, ±2, 0) și (0, 0, ±2).

Dodecaedrul rombic poate fi văzut ca un caz limită degenerat al unui piritoedru, cu permutarea coordonatelor (±1, ±1, ±1) și (0, 1 + h, 1 − h2) cu parametrul h = 1.

Proiecții ortogonale[modificare | modificare sursă]

Dodecaedrul rombic are patru proiecții ortogonale particulare, de-a lungul axelor sale de simetrie, centrate pe față, pe latură și pe două tipuri de vârfuri, cu 3 și 4 poziții. Ultimele două corespund cu planele Coxeter B2 și A2.

Proiecții ortogonale
Simetrie
proiectivă
[4] [6] [2] [2]
Dodecaedru
rombic
Dual cube t1 B2.png Dual cube t1.png Dual cube t1 e.png Dual cube t1 v.png
Cuboctaedru
(dual)
3-cube t1 B2.svg 3-cube t1.svg Cube t1 e.png Cube t1 v.png

Poliedre înrudite[modificare | modificare sursă]

Dodecaedru rombic sferic
Poliedre octaedrice uniforme    
Simetrie: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png sau CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png sau CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Dualele celor de mai sus
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg


Când sunt proiectate pe o sferă (v. figura din dreapta), se poate observa că laturile alcătuiesc laturile a două tetraedre dispuse în pozițiile lor duale (stella octangula). Această tendință continuă cu icositetraedrul deltoidal și hexecontaedrul deltoidal pentru perechile duale ale celorlalte poliedre regulate (împreună cu bipiramida triunghiulară dacă se iau în considerare pavările improprii), dând acestei forme denumirea sistematică alternativă de dodecaedru deltoidal.

Variante de pavări expandate duale cu simetrie *n32: V3.4.n.4
Simetrie
*n32
[n,3]
Sferice Euclid. Hiperb. compacte Paracomp.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
Config.
feței
Spherical trigonal bipyramid.png
V3.4.2.4
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical deltoidal hexecontahedron.png
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal tiling.svg
V3.4.7.4
H2-8-3-deltoidal.svg
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4.∞.4

Acest poliedru este o parte dintr-o succesiune de poliedre rombice și pavări cu simetria [n,3] din grupul Coxeter. Cubul poate fi considerat un hexaedru rombic unde romburile sunt pătrate.

Variante de pavări cvasiregulate duale: V(3.n)2
*n32 Sferice Euclidiană Hiperbolice
*332 *432 *532 *632 *732 *832... *∞32
Pavare Uniform tiling 432-t0.png Spherical rhombic dodecahedron.png Spherical rhombic triacontahedron.png Rhombic star tiling.png 7-3 rhombille tiling.svg H2-8-3-rhombic.svg Ord3infin qreg rhombic til.png
Conf. V(3.3)2 V(3.4)2 V(3.5)2 V(3.6)2 V(3.7)2 V(3.8)2 V(3.∞)2
Variante de pavări cvasiregulate duale: V(4.n)2
Simetrie
*4n2
[n,4]
Sferică Euclidiană Hiperbolice compacte Paracompactă Necompactă
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
 
[iπ/λ,4]
Pavare
 
Conf.
Spherical rhombic dodecahedron.png
V4.3.4.3
Uniform tiling 44-t0.svg
V4.4.4.4
H2-5-4-rhombic.svg
V4.5.4.5
Ord64 qreg rhombic til.png
V4.6.4.6
Ord74 qreg rhombic til.png
V4.7.4.7
Ord84 qreg rhombic til.png
V4.8.4.8
Ord4infin qreg rhombic til.png
V4.∞.4.∞
V4.∞.4.∞

Similar, se înrudește cu seria infinită de pavări cu configurațiile fețelor V3.2n.3.2n, prima în planul euclidian, iar restul în planul hiperbolic.

Rhombicdodecahedron net2.png
V3.4.3.4
(reprezentată ca desfășurată)
Tile V3636.svg
V3.6.3.6
Pavare euclidiană
pavare rombică
Uniform dual tiling 433-t01.png
V3.8.3.8
Pavare hiperbolică
(reprezentată în modelul discului Poincaré)

Stelări[modificare | modificare sursă]

Această animație arată construcția unui dodecaedru rombic stelat prin inversarea piramidelor centrate pe fețe ale unui dodecaedru rombic

La fel cu multe poliedre convexe, dodecaedrul rombic poate fi stelat prin extinderea fețelor sau laturilor până când se întâlnesc pentru a forma un nou poliedru. Mai multe astfel de stelări au fost descrise de Dorman Luke.[4] Prima stelare, numită adesea simplu dodecaedrul rombic stelat, este binecunoscută. Poate fi considerată un dodecaedru rombic cu fiecare față augmentată prin atașarea unei piramide cu baza un romb, cu înălțimea piramidei astfel încât laturile să se afle în planele fețelor învecinate.

Luke mai descrie patru stelări: a doua și a treia stelare (expandându-se spre exterior), una formată prin îndepărtarea celei de-a doua dintr-a treia și alta prin adăugarea dodecaedrului rombic original înapoi la precedenta.

Stelări ale dodecaedrului rombic
Prima A doua A treia
Three flattened octahedra compound.png
Dodecaedrul rombic stelat
Stellated rhombic dodecahedron.png
 
Great rhombic dodecahedron.png
Marele dodecaedru rombic stelat

Note[modificare | modificare sursă]

  1. ^ Șirul A157697 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  2. ^ Șirul A179587 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  3. ^ Șirul A020832 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  4. ^ en Luke, D. (). „Stellations of the rhombic dodecahedron”. The Mathematical Gazette. 41 (337): 189–194. doi:10.2307/3609190. JSTOR 3609190. 

Bibliografie[modificare | modificare sursă]

Legături externe[modificare | modificare sursă]