Energie liberă

De la Wikipedia, enciclopedia liberă
Salt la: Navigare, căutare
Pentru alte sensuri, vedeți Energie liberă (dezambiguizare).
Potențiale termodinamice
Energie internă    U \left( S , V , N \right) \,
Entalpie    H \left( S , p , N \right) \,
Energie liberă   F \left( T , V , N \right) \,
Entalpie liberă   G \left( T , p , N \right) \,
modifică 

Energia liberă (sau energia liberă Helmholtz, denumirea recomandată de IUPAC fiind Helmholtz energy sau Helmholtz function)[1] este o funcție de stare a unui sistem termodinamic. Energia liberă e legată de alte mărimi termodinamice fundamentale prin relația[2]

 \quad F = U - T S , \,

unde U \, este energia internă, T \, temperatura, iar S \, entropia.

Variația energiei libere într-o transformare izotermă reprezintă limita superioară a energiei care poate fi transferată către sistem în cursul transformării sub formă de lucru mecanic; această limită este atinsă dacă și numai dacă transformarea este și reversibilă. Într-o transformare izotermă la variabile de poziție constante, un sistem va atinge o stare finală de echilibru termodinamic corespunzătoare unui minim al energiei libere.[3]

Exprimată ca funcție de temperatură și de variabilele de poziție, energia liberă este un potențial termodinamic.

Istoric[modificare | modificare sursă]

Conceptul a fost introdus de Hermann Helmholtz în opera sa Thermodynamik chemischer Vorgänge din 1882.

Energia liberă a unui fluid[modificare | modificare sursă]

Fie o cantitate de fluid, care poate fi un amestec de c \, componente de specii moleculare diferite. O stare de echilibru a acestui sistem este complet descrisă de variabilele temperatură T,\, volum V\, și cantitățile în care sunt prezente componentele sale N=\left(N_1, ..., N_c\right)\,.[4] Energia liberă F \left( T,V,N \right) = U - T S \, este un potențial termodinamic. Diferențiala totală

dF = - S \, dT - p \, dV + \sum_{k=1}^c \mu_k \, dN_k \,

furnizează ecuațiile de stare


\left(\frac{\partial F}{\partial T}\right)_{V,\{N_k\}} =-S, \quad
\left(\frac{\partial F}{\partial V}\right)_{T,\{N_k\}} = -p, \quad
\left(\frac{\partial F}{\partial N_j}\right)_{T,V,\{N_{k\ne j}\}} = \mu_j.

Note[modificare | modificare sursă]

  1. ^ IUPAC Gold Book
  2. ^ Notația tradițională folosită de fizicieni pentru energia liberă este F ; \, în chimie și inginerie se folosește adesea notația A , \, recomandată de IUPAC.
  3. ^ Țițeica, pp. 107–109; Fermi, pp. 77-80.
  4. ^ Cantitățile N=\left(N_1, ..., N_c\right)\, pot fi exprimate în unități de masă, număr de moli sau chiar număr de molecule.

Bibliografie[modificare | modificare sursă]

  • Șerban Țițeica: Termodinamica, Editura Academiei Republicii Socialiste România, București, 1982.
  • I.G. Murgulescu și R. Vîlcu: Introducere în chimia fizică, Vol. III Termodinamica chimică, Editura Academiei Republicii Socialiste România, 1982.
  • Enrico Fermi: Thermodynamics, Dover Publications, 1956, ISBN 978-0-486-60361-2. [Google books].
  • Stoian Petrescu Principiile termodinamicii, Editura Tehnică, București, 1986

Vezi și[modificare | modificare sursă]