Marele icosaedru

De la Wikipedia, enciclopedia liberă
Marele icosaedru
Great icosahedron.png
(animație, model 3D)
Descriere
Tippoliedru Kepler–Poinsot
Fețe20
Laturi (muchii)30
Vârfuri12
χ2
Configurația vârfului(35)/2
Simbol Wythoff52 | 2 3
Simbol Schläfli{52,5}
Diagramă CoxeterCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
Grup de simetrieIh, H3, [5,3], (*532)
Grup de rotațieI, [5,3]+, (532)
Poliedru dualMarele dodecaedru stelat
Proprietățiregulat, neconvex
Figura vârfului
Great icosahedron vertfig.svg

În geometrie marele icosaedru este un poliedru Kepler–Poinsot cu simbolul Schläfli {3,52}. Este unul dintre cele patru poliedre regulate neconvexe. Este compus din 20 de fețe triunghiulare, cu cinci pentagrame care se întâlnesc în fiecare vârf.[1]

Marele icosaedru poate fi construit în mod analog pentagramei, analogul său bidimensional, prin prelungirea fețelor simplectice (n−1)-dimensionale ale nucleului n-politopului (cu triunghiuri echilaterale pentru marele icosaedru și segmente pentru pentagramă) până când se realizează fețele regulate.[1]

Dualul său este marele dodecaedru stelat, iar analogul său cvadridimensional este marele 600-celule.

Imagini[modificare | modificare sursă]


Snub[modificare | modificare sursă]

Marele icosaedru poate fi construit ca snub uniform, cu fețe colorate diferit și doar simetrie tetraedrică: CDel node h.pngCDel 3x.pngCDel rat.pngCDel d2.pngCDel node h.pngCDel 3x.pngCDel rat.pngCDel d2.pngCDel node h.png. Această construcție poate fi numită tetraedru retrosnub sau or tetratetraedru retrosnub,[2] similar cu simetria tetraedrului snub a icosaedrului, ca fațetare parțială a octaedrului trunchiat (sau tetraedrul omnitrunchiat ): CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png.Poate fi construit și cu triunghiuri de 2 culori și simetrie piritoedrică ca: CDel node h.pngCDel 3x.pngCDel rat.pngCDel d2.pngCDel node h.pngCDel 4.pngCDel node.png sau CDel node h.pngCDel 3x.pngCDel rat.pngCDel d2.pngCDel node h.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.png, și este numit octaedru retrosnub.

Poliedre înrudite[modificare | modificare sursă]

Trunchiere animată de la {52, 5} la {5, 52}

Are în comun cu icosaedrul regulat dispunerea vârfurilor, iar cu micul dodecaedru stelat dispunerea laturilor.

O operație de trunchiere, aplicată în mod repetat marelui icosaedru, produce o secvență de poliedre uniforme. Trunchierea laturilor până la puncte produce marele icosidodecaedru ca un mare icosaedru rectificat. Procesul se poate continua cu birectificarea, reducând fețele originale la puncte, producând astfel marele dodecaedru stelat.

Marele dodecaedru stelat trunchiat poate fi considerat un poliedru uniform[3] degenerat, cu 20 de fețe triunghiulare la vârfurile trunchiate și 12 fețe pentagonale (ascunse) ca trunchieri ale fețelor pentagramice originale, ultimele formând un mare dodecaedru înscris în figură și având în comun laturile icosaedrului.

trunchierea marelui dodecaedru stelat produce o serie de poliedre uniforme neconvexe.[3] Trunchierea muchiilor până la puncte produce dodecadodecaedrul ca un mare dodecaedru rectificat. Procesul se poate continua cu birectificarea, reducând fețele originale la puncte, producând astfel micul dodecaedru stelat.

Nume Marele dodecaedru stelat Marele dodecaedru stelat trunchiat Marele icosidodecaedru Marele icosaedru trunchiat Marele icosaedru
Diagramă Coxeter–Dynkin CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
imagine Great stellated dodecahedron.png Icosahedron.png Great icosidodecahedron.png Great truncated icosahedron.png Great icosahedron.png

Note[modificare | modificare sursă]

  1. ^ a b en Eric W. Weisstein, Great icosahedron la MathWorld.
  2. ^ en Klitzing, Richard. „uniform polyhedra Great icosahedron”. 
  3. ^ a b en Eric W. Weisstein, Uniform polyhedron la MathWorld.

Bibliografie[modificare | modificare sursă]

Legături externe[modificare | modificare sursă]