Orbită (astronomie)

De la Wikipedia, enciclopedia liberă
Salt la: Navigare, căutare

Orbita unui corp ceresc este traiectoria urmată de acel corp prin spațiul cosmic, în jurul unui alt corp sub efectul gravitației. De regulă, termenul orbită se utilizează numai în cazul în care corpul se rotește în jurul unui corp mai masiv sau ansamblu de corpuri și atracția gravitațională a acestora face ca această traiectorie să fie o curbă închisă ori hiperbolică.

Un exemplu clasic este cel al Sistemului Solar, în care Pământul, celelalte planete, asteroizii și cometele sunt pe orbită în jurul Soarelui. Tot așa, planetele pot poseda sateliți naturali pe orbită. În zilele noastre, se află pe orbită, în jurul Pământului mulți sateliți artificiali.

Cele trei legi ale lui Kepler permit determinarea, prin calcul a mișcării orbitale.

Orbita Lunii în jurul Pământului

Etimologie și sens matematic[modificare | modificare sursă]

Cuvântul românesc orbită are etimologie binară: latină orbita, -ae și franceză orbite.[1]La rândul său, acest cuvânt francez este un împrumut savant din limba latină, orbita, -ae[2] „linie circulară”, „urma lăsată de roți pe un drum” [3][4][5], derivat al cuvântului orbis, -is, „obiect de formă sferică, circulară”, „cerc”, „mișcare circulară”, „mișcare a aștrilor”.[3][4]

Inițial termenul orbite era utilizat în matematici pentru a desemna punctele parcurse pe o traiectorie, adică pe o curbă parametrată. Diferența dintre „orbită” și „traiectorie” consistă în faptul că traiectoria exprimă evoluția punctului, în timp ce orbita este un concept „static”. Astfel pentru o traiectorie f: t\mapsto M(t), orbita este mulțimea \{M(t)|t\in\R\}.

Prin urmare o orbită poate avea orice formă potrivit dinamicii sistemului studiat, dar cu timpul folosirea termenului s-a restrâns la orbitele închise în astronomie și în astronautică.

Forma orbitei[modificare | modificare sursă]

Considerăm în continuare cazul unui sistem format din două corpuri. În acest caz, traiectoria fiecăruia dintre corpuri, considerată în sistemul de referință în care centrul de masă al sistemului este fix, poate fi:

  • un cerc cu centrul în centrul de masă al sistemului;
  • o elipsă cu unul dintre focare în centrul de masă al sistemului;
  • o parabolă cu focarul în centrul de masă al sistemului;
  • una dintre ramurile unei hiperbole cu un focar în centrul de masă.

Într-o primă aproximație, traiectoria unui corp într-un sistem de mai multe corpuri dintre care unul îl influențează mult mai puternic decât celelalte este similară cu cazul unui sistem de două corpuri. Ca urmare, traiectoria unei planete în jurul Soarelui sau a unui satelit natural în jurul planetei este un cerc, o elipsă, o parabolă sau o hiperbolă.

Deoarece termenul de orbită se utilizează de regulă doar pentru orbite închise și deoarece orbita circulară este un caz particular de orbită eliptică, prin orbită se înțelege de cele mai multe ori orbită eliptică

Elementele orbitei[modificare | modificare sursă]

Apsis este punctul cel mai depărtat sau cel mai apropiat față de orbita eliptică a unui corp ceresc de la centrul său de atracție, care este in general centrul de masă al sistemului. Punctul cel mai apropiat este denumit periapsis sau pericentru iar punctul cel mai îndepărtat este apoapsis, apocentru sau apapsis.

O linie dreaptă trasă prin periapsis și apoapsis este linia apsidelor.

Pentru anumite obiecte astronomice există denumiri specifice pentru periapsis și apoapsis, formate din prefixul peri, respectiv apo și următoarele sufixe:

Obiecte ale Sistemului Solar
Corp
ceresc
Soare Mercur Venus Pământ Lună Marte Jupiter Saturn Uranus Neptun Pluto
Sufix -heliu -hermion -cytherion -geu -lun
-cynthion[6]
-selen
-areion -zen
-jov/-iov
-cron
-saturniu
-uranion -poseidon -hadion
Originea
denumirii
Helios Hermes Cynthia Gaia Selene Ares Jupiter Cronos
Saturn
Uranus Poseidon Hades
Alte obiecte
Stele Galaxii Baricentru găuri negre
-astru -galacticon -centru
-focus
-apsis
-melasma[7]
-nigricon[8]

Cazuri particulare[modificare | modificare sursă]

Cei mai utilizați termeni sunt perigeu si apogeu, care se referă la orbitele din jurul Pământului și respectiv afeliu și periheliu, care se referă la orbitele din jurul Soarelui.

Referințe[modificare | modificare sursă]

  1. ^ Ioan Oprea, Carmen-Gabriela Pamfil, Rodica Radu, Victoria Zăstroiu, Noul dicționar universal al limbii române (2007)
  2. ^ Albert Dauzat, Jean Dubois, Henri Mitterand, Nouveau dictionnaire étymologique et historique (1977)
  3. ^ a b Dicționar latin-romîn (1962)
  4. ^ a b Gheorghe Guțu, Dicționar latin - român (1983)
  5. ^ Dictionnaire Gaffiot latin-français (1934) (consultat la 2 august 2015)
  6. ^ Apollo 15 Mission Report”. Glossary. http://history.nasa.gov/alsj/a15/a15mr-f.htm. Accesat la 16 octombrie 2009. 
  7. ^ Folosit de scriitorul și astrofizicianul Geoffrey A. Landis înainte ca termenul alternativ - perinigricon să apară în literatura științifică în anul 2002
  8. ^ R. Schodel, T. Ott, R. Genzel, R. Hofmann, M. Lehnert, A. Eckart, N. Mouawad, T. Alexander, M.J. Reid, R. Lenzen, M. Hartung, F. Lacombe, D. Rouan, E. Gendron, G. Rousset, A.-M. Lagrange, W. Brandner, N. Ageorges, C. Lidman, A.F.M. Moorwood, J. Spyromilio, N. Hubin, and K.M. Menten, "Closest Star Seen Orbiting the Supermassive Black Hole at the Centre of the Milky Way," Nature 419, 694–696 (17 October 2002), doi:10.1038/nature01121.

Bibliografie[modificare | modificare sursă]

  • Dicționar latin-romîn, Colectivul de elaborare: Rodica Ocheșanu, Liliana Macarie, Sorin Stati, N. Ștefănescu, Editura Științifică, București - 1962
  • Gheorghe Guțu, Dicționar latin - român, Editura Științifică și Enciclopedică, București, în 1983 (1326 de pagini, format 24 cm x 17 cm). Ediția a doua a apărut la Editura Humanitas, București. ISBN 9732809337
  • Albert Dauzat, Jean Dubois, Henri Mitterand, Nouveau dictionnaire étymologique et historique par..., quatrième édition revue et corrigée, Librairie Larousse, Paris, 1977. ISBN 2-03-020210-X
  • Ioan Oprea, Carmen-Gabriela Pamfil, Rodica Radu, Victoria Zăstroiu, Noul dicționar universal al limbii române, Ediția a doua, Editura Litera Internațional, București-Chișinău, 2007. ISBN 978-973-675-307-7
  • Abell; Morrison; Wolff (1987). Exploration of the Universe (ed. fifth). Saunders College Publishing 
  • Linton, Christopher (2004). From Eudoxus to Einstein. Cambridge: University Press. ISBN 0-521-82750-7
  • Swetz, Frank; et al. (1997). Learn from the Masters!. Mathematical Association of America. ISBN 0-88385-703-0
  • Andrea Milani and Giovanni F. Gronchi. Theory of Orbit Determination (Cambridge University Press; 378 pages; 2010). Discusses new algorithms for determining the orbits of both natural and artificial celestial bodies.

Vezi și[modificare | modificare sursă]