Momentul forței

De la Wikipedia, enciclopedia liberă
(Redirecționat de la Momentul forţei)
Jump to navigation Jump to search
Relația dintre forță (F) și momentul forței (τ) în cazul unui corp în rotație

Momentul forței este o mărime fizică vectorială ce exprimă cantitativ capacitatea forței de a roti un rigid in jurul unei drepte ce trece printr-un punct și este perpendiculara pe planul format de dreapta suport a forței și punctul respectiv. Este important în funcționarea unor aparate de zbor ca de exemplu elicopterul.

Momentul unei forțe în raport cu un punct[modificare | modificare sursă]

Momentul unei forțe în raport cu un punct

Momentul forței , care acționează asupra unui solid rigid ,în raport cu punctul O, numit pol, este o mărime vectorială notată cu sau mai simplu notată cu și reprezintă produsul vectorial dintre vectorul de poziție care unește punctul O cu un punct oarecare de pe suportul forței și forță:

unde:
este unghiul dintre și
și este brațul forței F fața de punctul O , care reprezintă distanța de la punctul O până la dreapta suport a forței F , adica lungimea perpendicularei dusă din punctul O pe dreapta suport a forței F.

Momentul unei forțe în raport cu un punct O se exprimă analitic în raport cu sistemul de referință cartezian triortogonal drept OXZY prin relația:

unde:

sunt proiecțiile momentului forței F in raport cu punctul O pe axele Ox , Oy si Oz

Caracteristicile vectorului moment:

  • punctul de aplicație este în O , ceea ce inseamna ca vectorul moment este un vector legat;
  • direcția este normală pe planul format de O și suportul forței;
  • sensul este corespunzător triedrului drept;
  • mărimea (modulul) acestuia este:

unde d = OB se numește brațul forței și reprezinta lungimea perpendicularei dusa din O pe dreapta suport a forței.

Proprietăți[modificare | modificare sursă]

  • Momentul unei forțe în raport cu un punct arbitrar de pe dreapta suport a forței este întotdeauna nul.
,deoarece si sunt coliniari.
  • Momentul unei forțe în raport cu un punct care nu aparține dreptei suport al forței este intotdeauna constant la alunecarea forței pe dreapta sa suport.

Demonstrație:[modificare | modificare sursă]

deoarece BA si F sunt vectori coliniari.

  • Punctul O se deplasează pe o dreaptă paralelă cu (Δ).
  • Momentul unei forțe se schimbă dacă se schimbă polul din O în O1:
iar este legea de variație a momentului unei forțe la schimbarea punctului in raport cu care este calculat.
Momentul unei forțe în raport cu o axă

Momentul unei forțe în raport cu o axă[modificare | modificare sursă]

Componentele forței

Momentul unei forțe în raport cu o axă, de versor este proiecția pe acea axă a momentului forței calculat în raport cu un punct oarecare al axei respective:

Proprietăți[modificare | modificare sursă]

  • dacă cei trei vectori sunt coplanari: forța este paralelă cu axa Δ sau suportul forței intersectează axa.
  • nu depinde de alegerea punctului O pe axa Δ:

Astfel, dacă se consideră un alt punct O1:

  • Momentul unei forțe în raport cu o axă Δ este egal cu mărime momentului produs de componenta forței dintr-un plan normal pe axă, calculat în raport cu punctul în care axa Δ intersectează planul normal:

Terminologie[modificare | modificare sursă]

  • Momentul forței este tradițional notat de fizicienii români cu MF, spre deosebire de fizicienii anglofoni, care îl notează cu litera greacă tau (τ).
  • O formă tehnică a momentului forței e un cuplu de forțe constând din două forte antagoniste acționând diametral la capetele aceluiași braț, dând momentul:

Vezi și[modificare | modificare sursă]

Bibliografie[modificare | modificare sursă]

  • Mercheș, Ioan și Burlacu, Lucian: Mecanică analitică și a mediilor deformabile, Editura didactică și pedagogică, București, 1983.