Funcția gamma

De la Wikipedia, enciclopedia liberă
Salt la: Navigare, căutare
Graficul funcţiei gamma pe o parte din axa reală

În matematică, funcția gamma, reprezentată prin litera grecească Γ = gamma majusculă, este o funcție care extinde noțiunea de factorial de la numerele întregi la numerele reale și complexe. Pentru un număr complex z cu partea reală pozitivă, funcția gamma se definește ca

 \Gamma(z) = \int_0^\infty  t^{z-1} e^{-t}\,dt\;.

Această definiție poate fi extinsă la tot restul planului complex, cu excepția numerelor întregi nepozitive.

Dacă n este un număr întreg pozitiv, atunci

 \Gamma(n) = (n-1)!\,

ceea ce arată legătura funcției gamma cu factorialul numerelor întregi pozitive. Funcția gamma generalizează funcția factorial la valori neîntregi și complexe ale lui n.

Funcția gamma este o componentă a mai multor distribuții de probabilitate, și deci are aplicații în domeniile probabilităților, statisticii, și combinatoricii.

Definiție[modificare | modificare sursă]

Definiția principală[modificare | modificare sursă]

Versiunea extinsă a funcţiei gamma în planul complex

Notația Γ(z) i se datorează lui Adrien-Marie Legendre. Dacă partea reală a numărului complex z este pozitivă (Re[z] > 0), atunci integrala


\Gamma(z) = \int_0^\infty  t^{z-1} e^{-t}\,dt

este absolut convergentă. Folosind integrarea prin părți, se poate arăta că

\Gamma(z+1)=z \, \Gamma(z).\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1) \,\!

Această ecuație funcțională generalizează relația n! = n×(n-1)! a funcției factorial. Se poate evalua Γ(1) analitic:

 \Gamma(1) = \int_0^\infty e^{-t} dt = \lim_{k \rightarrow \infty} -e^{-t} |_0^k = -0 - (-1) = 1.

Combinând aceste două relații rezultă că funcția factorial este un caz particular al funcției gamma:

\Gamma(n+1) = n \, \Gamma(n) = \cdots = n! \, \Gamma(1) = n!\,

pentru orice număr natural n.

Valoarea absolută a funcției gamma în planul complex.

Identitatea (1) poate fi folosită și pentru a extinde Γ(z) la o funcție meromorfă definită pentru toate numerele complexe z în afara lui 0 și pentru numerele întregi negative (se poate calcula că z = −n este doar un pol cu reziduul (−1)n/n!).[1] Această versiune extinsă este numită de obicei funcție gamma.

Definiții alternative[modificare | modificare sursă]

Următoarele definiții cu produs infinit ale funcției gamma, datorate respectiv lui Euler și Weierstrass, sunt corecte pentru toate numerele complexe z, cu excepția numerelor negative:


\begin{align}
\Gamma(z) &= \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} 
= \frac{1}{z} \prod_{n=1}^\infty \frac{\left(1+\frac{1}{n}\right)^z}{1+\frac{z}{n}}
\\
\Gamma(z) &= \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n} \\
\end{align}

unde γ este constanta Euler–Mascheroni.

Se poate arăta că definiția lui Euler satisface ecuația funcțională (1) de mai sus, după cum urmează. Dat fiind z diferit de 0, -1, -2, ...


\begin{align}
\Gamma(z+1) &= \lim_{n \to \infty} \frac{n! \; n^{z+1}}{(z+1) \; (z+2)\cdots(z+1+n)} \\
&= \lim_{n \to \infty} \left( z \; \frac{n! \; n^z}{z \; (z+1) \; (z+2)\cdots(z+n)} \; \frac{n}{(z+1+n)}\right) \\
&= z \; \Gamma(z) \; \lim_{n \to \infty} \frac{n}{(z+1+n)} \\
&= z \; \Gamma(z). \\
\end{align}

Altfel, se poate arăta că:


\Gamma(z+1) = \int_0^\infty  e^{-t^{1/z}}\,dt. \,\!

Note[modificare | modificare sursă]

  1. ^ George Allen, și Unwin, Ltd., The Universal Encyclopedia of Mathematics. United States of America, New American Library, Simon and Schuster, Inc., 1964. (Forward by James R. Newman)

Legături externe[modificare | modificare sursă]

Commons
Wikimedia Commons conține materiale multimedia legate de Funcţia Gamma şi alte funcţii