Număr poligonal central
Nr. total de termeni | infinit |
---|---|
Subșir al | număr poligonal |
Formula | [1] |
Primii termeni | 1, 2, 4, 7, 11, 16, 22 [1] |
Index OEIS |
|
În matematică un număr poligonal central este un număr figurativ care indică numărul maxim de regiuni în care poate fi divizat un disc printr-un număr dat, n, de drepte. Prin analogie cu tăierea în bucăți a unei foi de clătită, pentru n succesiv numerele sunt cunoscute drept șirul tăietorului leneș (în engleză lazy caterer's sequence). De exemplu, cu trei tăieturi o clătită va putea fi tăiată în șase bucăți dacă toate tăieturile se întâlnesc într-un punct comun în interiorul discului, dar în șapte bucăți dacă nu se întâlnesc. Această problemă poate fi formalizată matematic ca una de numărare a regiunilor dintr-un aranjament de drepte(d). Pentru generalizări în dimensiuni superioare a se vedea aranjament de hiperplane(d).
Analogul tridimensional al acestui șir este șirul numerelor de tort.
Formula șirului
[modificare | modificare sursă]Numărul maxim de regiuni p care se pot obține prin n tăieturi drepte, unde n ≥ 0, este dat de formula:[1]
Folosind coeficienții binomiali, formula poate fi exprimată sub forma:
De fapt, doar se adună 1 la numerele triunghiulare. Deoarece a treia coloană a triunghiului lui Bernoulli (k = 2) este un număr triunghiular plus unu, ea este șirul tăietorului leneș din n tăieturi, unde n ≥ 2.
Șirul poate fi obținut și din suma primilor 3 termeni ai fiecărui rând din triunghiul lui Pascal:[2]
- kn
0 1 2 Suma 0 1 - - 1 1 1 1 - 2 2 1 2 1 4 3 1 3 3 7 4 1 4 6 11 5 1 5 10 16 6 1 6 15 22 7 1 7 21 29 8 1 8 28 37 9 1 9 36 46
Șirul, începând cu n = 0, este:[1]
Analogul său tridimensional este șirul numerelor de tort. Diferența dintre numerele succesive de tort dă șirul tăietorului leneș.[3]
Demonstrație
[modificare | modificare sursă]Când un disc este tăiat de n ori, pentru a se obține numărul maxim de bucăți, reprezentat ca p = f(n), trebuie luată în considerare a n-a tăietură; numărul de bucăți înainte de ultima tăiere este f(n − 1), în timp ce numărul de bucăți adăugate de ultima tăiere este n.
Pentru a obține numărul maxim de bucăți, a n-a dreaptă tăietoare ar trebui să intersecteze toate celelalte drepte tăietoare anterioare din interiorul discului, dar să nu treacă prin nicio intersecție a dreptelor tăietoare anterioare. Astfel, a n-a dreaptă în sine este tăiată în n − 1 locuri și în n segmente. Fiecare segment divide (n − 1) bucăți deja tăiate în 2 părți, adăugând exact n la numărul de bucăți. Noua dreaptă nu poate avea mai multe segmente, deoarece poate traversa fiecare dreaptă anterioară o singură dată. O dreaptă tăietoare poate trece întotdeauna peste toate dreptele tăietoare anterioare, deoarece rotirea cuțitului la un unghi mic în jurul unui punct care nu este o intersecție deja existentă va intersecta, dacă unghiul este suficient de mic, toate dreptele anterioare, inclusiv pe ultima adăugată.
Astfel, numărul total de piese după n tăieturi este:
Această relație de recurență poate fi rezolvată. Dacă f(n − 1) este extins cu un termen, relația devine:
Dezvoltarea termenului f(n − 2) poate continua până când ultimul termen este redus la f(0), astfel,
Fiindcă f(0) = 1, deoarece există o singură bucată înainte de a face prima tăiere, aceasta poate fi rescrisă ca:
Expresia poate fi simplificată folosind formula pentru suma unei progresii aritmetice:
Note
[modificare | modificare sursă]- ^ a b c d Șirul A000124 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
- ^ Șirul A000124 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
- ^ en Yaglom, Akiva; Yaglom, Isaak (). Challenging Mathematical Problems with Elementary Solutions. 1. New York: Dover Publications.
Bibliografie
[modificare | modificare sursă]- en Moore, T. L. (), „Using Euler's formula to solve plane separation problems”, The College Mathematics Journal, Mathematical Association of America, 22 (2): 125–130, doi:10.2307/2686448, JSTOR 2686448
- en Steiner, J. (), „Einige Gesetze über die Theilung der Ebene und des Raumes ("A Few Statements about the Division of the Plane and of Space")”, J. Reine Angew. Math., 1: 349–364
- en Wetzel, J. E. (), „On the division of the plane by lines” (PDF), American Mathematical Monthly, Mathematical Association of America, 85 (8): 647–656, doi:10.2307/2320333, JSTOR 2320333, arhivat din original (PDF) la , accesat în