Sari la conținut

Lunulă

De la Wikipedia, enciclopedia liberă
În geometria plană semiluna formată din două cercuri care se intersectează se numește lunulă. În diagrame sunt prezente câte două lunule, una fiind umbrită gri.

În geometria plană o lunulă este zona concav-convexă delimitată de două arce de cerc.[1][2] Are o porțiune a frontierei pentru care segmentul dintre două puncte apropiate se află în întregime în afara zonei și o altă porțiune a frontierei pentru care segmentul dintre două puncte din apropiere se află în întregime în interiorul zonei. O zonă asemănătoare, dar convex-convexă, este denumită lentilă.[3]

Formal, o lunulă este complementul relativ al unui disc cu care se intersectează, dar niciunul nu este inclus complet în celălalt. Alternativ, dacă și sunt discuri, atunci este o lunulă.

Cvadratura lunulei

[modificare | modificare sursă]

În secolul al V-lea î.Hr. Hipocrate din Chios a arătat că lunula lui Hipocrate și alte două lunule ar putea fi convertite într-un pătrat având aceeași arie folosind doar rigla și compasul. În 1766 matematicianul finlandez Daniel Wijnquist, citându-l pe Daniel Bernoulli, a enumerat toate cele cinci lunule care au cvadraturi, adăugându-le celor cunoscute de Hipocrate. În 1771, Leonard Euler a prezentat o abordare generală și o ecuație a problemei. În 1933 și 1947 a fost demonstrat de Nikolai Cebotariov și studentul său Anatoli Dorodnov că acestea cinci sunt singurele lunule care au cvadraturi.[4][2]

Aria unei lunule formate din cercuri cu razele a și b (b > a) cu distanta c între centrele lor este[4]

unde este inversa secantei, iar

este aria triunghiului cu laturile a, b și c.

  1. ^ lunulă” la DEX online
  2. ^ a b en A history of analysis. H. N. Jahnke. Providence, RI: American Mathematical Society. . p. 17. ISBN 0-8218-2623-9. OCLC 51607350. 
  3. ^ en „Google Groups”. Groups.google.com. Accesat în . 
  4. ^ a b en Eric W. Weisstein, Lune la MathWorld.

Legături externe

[modificare | modificare sursă]