Utilizator:Babu/teste11

De la Wikipedia, enciclopedia liberă
Telescopul spațial James Webb
O redare a telescopului spațial James Webb cu componentele sale.
NumeNext Generation Space Telescope (NGST; 1996–2002)
Tipul misiuniiAstronomie
OperatorSTScI (NASA)[1]
WebsiteSite web oficial
Durata misiunii
  • 10 ani (planificare)
  • 2 ani, 3 luni, 26 zile (trecut)
Proprietățile navei spațiale
Producător
Masă de lansare6.161,4 kg [2]
Dimensiuni20,197 m × 14,162 m, parasolar
Putere2 kW
Începutul misiunii
Dată lansare25 decembrie 2021, 12:20 UTC
LansatorAriane 5 ECA (VA256)
Loc lansareCentrul Spațial Kourou, ELA-3
ContractorArianespace
Parametri orbitali
Sistem de referințăOrbită Soare–Terra L2
RegimOrbită halou
Periapsidă250.000 km [3][4]
Apoapsidă832.000 km
Perioadă6 luni
Telescop principal
TipTelescop Korsch
Diametru6,5 m
Distanța focală131,4 m
Raport focalf/20.2
Captarea luminii25,4 m2 [5]
Lungime de undă0,6–28,3 μm (portocaliu până la infraroșu de undă medie)
Transponder
Bandă
  • S-band, telemetrie, urmărire și control
  • Ka-band, achiziție de date
Lățime de bamdă
  • S-band sus: 16 kbit/s
  • S-band jos: 40 kbit/s
  • Ka-band jos: până la 28 Mbit/s

James Webb Space Telescope mission logo  

Telescopul spțial James Webb (JWST) este un telescop spațial dezvoltat de NASA, Agenția Spațială Europeană (ESA) și Agenția Spațială din Canada (CSA). Este destinat să succcedă telescopului spațial Hubble ca misiune emblematică a NASA în astrofizică.[6][7] JWST a fost lansat la 25 decembrie 2021 pe o rachetă Ariane 5 VA256. Este conceput să ofer o rezoluție și o sensibilitate îmbunătățite în infraroșu față de Hubble și va permite o gamă largă de investigații în domeniile astronomiei și cosmologiei, inclusiv observații ale unora dintre cele mai îndepărtate evenimente și obiecte din Univers, cum ar fi formarea primelor galaxii. Permite caracterizarea atmosferică detaliată a exoplanetelor potențial locuibile .

Oglinda principală a JWST este formată din 18 segmente hexagonale de oglinzi din beriliu placate cu aur, care atunci când sunt combinate, creează o oglindă cu un diametru de 6,5 metri, considerabil mai mare decât oglinda principală de pe Hubble care are 2,4 metri. Spre deosebire de telescopul Hubble, care observă în spectrul ultraviolet apropiat, vizibil și infraroșu apropiat (0,1–1,0 μm), JWST va observa într-un interval de frecvență mai scăzut, de la lumina vizibilă cu lungime de undă lungă (roșu) până la infraroșu mediu (0,6–28,3 μm). Acest lucru îi va permite să observe obiecte cu deplasare spre roșu mare, care sunt prea vechi și prea îndepărtate pentru ca Hubble să le poată observa.[8][9] Telescopul trebuie ținut foarte rece pentru a observa în infraroșu fără interferențe, așa că va fi desfășurat în spațiu lângă punctul Lagrange L2 Soare-Pământ, la aproximativ 1,5 milioane de kilometri de Pământ.[10] Un parasolar mare construit din cinci straturi de material spațial învelit în aluminiu numit kapton va păstra oglinda și instrumentele la o temperatură de sub 50 K (-223 °C).[11]

Telescopul este numit după James E. Webb,[12] care a fost administratorul NASA din 1961 până în 1968 și a jucat un rol esențial în programul Apollo.[13][14]

Dezvoltarea a început în 1996 pentru o lansare care a fost inițial planificată pentru 2007, cu un buget de 500 milioane USD.[15] Au existat numeroase întârzieri și depășiri de costuri, inclusiv o reproiectare majoră în 2005,[16] un parasolar rupt în timpul implementării unei practici, o recomandare a unui comitet de evaluare independent, pandemia de COVID-19,[17][18][19] probleme cu racheta Ariane 5[20] și cu telescopul în sine, și problemele de comunicare între telescop și vehiculul de lansare.[21]

Construcția a fost finalizată la sfârșitul anului 2016, moment în care a început o fază amplă de testare.[22][23] JWST a fost lansat la 25 decembrie 2021 12:20 UTC de un vehicul de lansare Ariane 5 de la Kourou, Guiana Franceză, pe coasta de nord-est a Americii de Sud, și a fost eliberat din etapa superioară 27 de minute mai târziu. [24] S-a confirmat că telescopul primește energie și, din decembrie 2021, călătorește în prezent către destinația țintă.[25][26][27]

Caracteristici[modificare | modificare sursă]

Telescopul spațial James Webb are o masă de aproximativ jumătate din cea a telescopului spațial Hubble, oglinda sa principală din beriliu acoperită cu aur are un diametrul de 6,5 metri (spre deosebire de cea de pe Hubble care are 2,4 metri) și cu suprafața de colectare a luminii de șase ori mai mare decât a telescopului Hubble. Beriliul este un metal foarte rigid, dur și ușor, folosit adesea în industria aerospațială, care este nemagnetic și își păstrează forma cu precizie într-un mediu ultra-rece.[28] Învelișul de aur oferă reflectivitate în infraroșu și durabilitate.

JWST este conceput în primul rând pentru astronomia în infraroșu apropiat, dar poate vedea și lumina vizibilă portocalie și roșie, precum și regiunea infraroșu mediu, în funcție de instrument. Poate detecta obiecte de până la 100 de ori mai slabe decât o poate face Hubble și obiecte care s-au format mult mai devreme în istoria universului, la o deplasare spre roșu z≈20 (aproximativ 180 de milioane de ani timp cosmic (după Big Bang)).[29] Pentru comparație, se crede că cele mai vechi stele s-au format între z≈30 și z≈20 (100-180 milioane de ani timp cosmic).[30] Este posibil ca primele galaxii să se fi format în jurul deplasării spre roșu z≈15 (aproximativ 270 de milioane de ani de timp cosmic), iar Hubble nu poate vedea mai departe de z≈12 (aproximativ 370 de milioane de ani de timp cosmic).[29] JWST este special conceput să vadă începuturile Universului, „nașterea” primelor stele și formarea primelor galaxii.

Telescoapele de la sol trebuie să privească prin atmosfera Pământului, care este opacă în multe benzi de infraroșu. Chiar și acolo unde atmosfera este transparentă, mulți dintre compușii chimici țintă, cum ar fi apa, dioxidul de carbon și metanul, există și în atmosfera Pământului, complicând considerabil analiza. Telescoapele spațiale existente, cum ar fi Hubble, nu pot studia aceste benzi, deoarece oglinzile lor sunt insuficient de reci (oglinda Hubble este menținută la aproximativ 15 °C (288 K), astfel telescopul în sine radiază puternic în benzile infraroșii.[31]

Scutul pentru protecție solară[modificare | modificare sursă]

Parasolar cu cinci straturi JWST, de dimensiunea unui teren de tenis, dezvoltat de Northrop Grumman, 2014

Pentru a face observații în spectrul infraroșu, JWST trebuie menținut sub 50 K (−223,2 °C); altfel, radiația infraroșie de la telescop însuși ar copleși instrumentele acestuia. Prin urmare, folosește un parasolar mare pentru a bloca lumina și căldura de la Soare, Pământ și Lună, iar poziția sa lângă Soare-Pământ L2 menține toate cele trei corpuri pe aceeași parte a navei spațiale în orice moment.[32] Orbita halou în jurul punctului L2 evită umbra Pământului și a Lunii, menține un mediu constant pentru parasolar și panouri solare.[33] Ecranul menține o temperatură stabilă pentru structurile de pe partea întunecată, ceea ce este esențial pentru menținerea alinierii precise a segmentelor oglinzii primare în spațiu.[11]

Parasolarul este alcătuit din cinci straturi de polimer metalizate, distanțate, care reflectă căldura înapoi în spațiu.[34] Materialul folosit este extrem de subțire: 0,05 mm pentru stratul orientat spre Soare și 0,025 mm pentru celelalte. Trecând de la stratul exterior la stratul interior, fiecare strat este mai rece decât cel anterior. Rupturile accidentale ale structurii delicate a parasolarului în timpul testării în 2018 au fost printre factorii care au întârziat proiectul.[35]

Parasolarul este proiectat pentru a fi pliat de douăsprezece ori, astfel încât să se potrivească în carenarea încărcăturii utile a rachetei Ariane 5, care are 4,57 m în diametru și 16,19 m lungime. Odată desfășurat în punctul L2, acesta va avea 14,162 m × 21,197 m.

Format:Souligner : fonctionnement du bouclier thermique du télescope spatial JWST.
Format:Souligner : fonctionnement du bouclier thermique du télescope spatial JWST.

Sistemul optic[modificare | modificare sursă]

Ingineri care curăță o oglindă de test cu dioxid de carbon, 2015
Asamblarea oglinzii principale la Centrul de Zbor spațial Goddard, mai 2016

Oglinda principală a JWST este un reflector din beriliu acoperit cu aur cu diametrul de 6,5 m cu o zonă de colectare de 25,4 m 2. Aceste dimensiuni sunt prea mari pentru vehiculele de lansare existente, așa că oglinda este compusă din 18 segmente hexagonale care se vor desfășura după lansarea telescopului. Detectarea frontului de undă plat al imaginii prin recuperarea de fază va fi utilizată pentru a poziționa segmentele oglinzii în locația corectă folosind micromotoare foarte precise. După această configurație inițială, vor avea nevoie doar de actualizări ocazionale la fiecare câteva zile pentru a păstra focalizarea optimă,[36] spre deosebire de telescoapele de la sol, precum Observatorul W. M. Keck, care își ajustează continuu segmentele de oglindă folosind optica activă pentru a depăși efectele gravitaționale și ale vântului. Telescopul Webb va folosi 126 de motoare mici pentru a regla ocazional optica, deoarece există puține perturbări de mediu ale unui telescop în spațiu.[37]

Designul optic al JWST este un sistem anastigmatic cu trei oglinzi,[38] care folosește oglinzi secundare și terțiare curbate pentru a furniza imagini care sunt lipsite de aberații optice pe un câmp larg. Oglinda secundară are un diametru de 0,74 m. În plus, există o oglindă de direcție fină care își poate regla poziția de mai multe ori pe secundă pentru a asigura stabilizarea imaginii. Rolul oglinzii secundare este să concentreze lumina colectată de oglinda principală într-o deschidere din centrul acestei oglinzi. Prin această deschidere, lumina ajunge la o a treia oglindă, care o reflectă către instrumentele telescopului.

Ball Aerospace & Technologies este principalul subcontractant optic pentru proiectul JWST, condus de contractorul principal Northrop Grumman Aerospace Systems, în baza unui contract de la NASA Goddard Space Flight Center, din Greenbelt, Maryland.[39][40] Optsprezece segmente de oglindă primară, oglinzi de direcție secundare, terțiare și fine, plus piese de schimb de zbor au fost fabricate și lustruite de Ball Aerospace & Technologies pe baza segmentelor semifabricate de beriliu produse de mai multe companii, inclusiv Axsys, Brush Wellman și Tinsley Laboratories.[41]

Instrumente științifice[modificare | modificare sursă]

Telescopul spațial James Webb este echipat cu patru instrumente științifice, toate montate într-un suport special, numit Integrate Science Instrument Module (ISIM).[42]

  • NIRCam (Near InfraRed Camera; Camera pentru infraroșu apropiat) este un aparat de imagine în infraroșu care va avea o acoperire spectrală variind de la marginea vizibilului (0,6 micrometri) până la infraroșu apropiat (5 micrometri).[43][44] Există 10 senzori fiecare de 4 megapixeli. NIRCam va servi și ca senzor de front de undă, el va măsura orice imperfecțiune în alinierea segmentelor oglinzilor care îi împiedică să acționeze ca o singură oglindă. Folosind acest instrument, inginerii de pe Pământ vor putea regla segmentele oglinzilor prin mișcări ale celor șapte actuatoare ale fiecărui segment (motoare mecanice mici). NIRCam a fost construit de o echipă condusă de Universitatea din Arizona. Partenerul industrial este Centrul de tehnologie avansată al Lockheed-Martin, situat în Palo Alto, California.[45]
  • NIRSpec (Near InfraRed Spectrograph; Spectrograf cu infraroșu apropiat) va efectua spectroscopie pe același interval de lungimi de undă. A fost construit de Agenția Spațială Europeană la ESTEC în Noordwijk, Țările de Jos. Echipa principală de dezvoltare include membri de la Airbus Defence and Space, Ottobrunn și Friedrichshafen, Germania, și Goddard Space Flight Center. NIRSpec este capabil să măsoare simultan spectrul infraroșu apropiat de până la 100 de obiecte precum stele sau galaxii cu rezoluții spectrale joase, medii și înalte. Are, de asemenea, un set de fante și o deschidere pentru spectroscopie cu contrast ridicat a surselor individuale, precum și o unitate de câmp integral (IFU) pentru spectroscopie 3D.[46]
  • MIRI (Mid-InfraRed Instrument; Instrument cu infraroșu mediu) va măsura intervalul de lungimi de undă din infraroșu mediu până la lung de la 5 la 27 de micrometri.[47][48] Conține atât o cameră cu infraroșu mediu cât și un spectrometru de imagine.[39] Temperatura MIRI nu trebuie să depășească 6 kelvin (K): un răcitor mecanic cu gaz heliu situat pe partea caldă a scutului de mediu asigură această răcire.[49] MIRI a fost dezvoltat ca o colaborare între NASA și un consorțiu de țări europene.[45]
  • FGS/NIRISS (Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph; Senzor de ghidare fină / Imagine aproape de infraroșu și spectrograf fără fante), condus de Agenția Spațială Canadiană, este utilizat pentru obținerea unor imagini de înaltă rezoluție, detecția exoplanetelor, precum și la spectroscopia tranzitului exoplanetelor.

Misiune[modificare | modificare sursă]

Telescopul spațial James Webb are patru obiective cheie:

  • să caute lumina de la primele stele și galaxii care s-au format în Univers după Big Bang
  • să studieze formarea și evoluția galaxiilor
  • să înțeleagă formarea stelelor și a sistemelor planetare
  • să studieze sistemele planetare și originea vieții.[50]

Aceste obiective pot fi atinse mai eficient prin observarea în lumina infraroșie apropiată, mai degrabă decât în lumina din partea vizibilă a spectrului. Din acest motiv, instrumentele lui JWST nu vor măsura lumina vizibilă sau ultravioletă așa cum face Telescopul Hubble, dar vor avea o capacitate mult mai mare de a efectua astronomie în infraroșu. JWST va fi sensibil la o gamă de lungimi de undă de la 0,6 la 28 micrometri (corespunzând, respectiv, luminii portocalii și radiației infraroșii profunde la aproximativ 100 K sau -173 °C).

Lansare și durata misiunii[modificare | modificare sursă]

Lansarea (denumit zborul Ariane VA256) a avut loc conform programului la 25 decembrie 2021 pe un vehicul de lansare Ariane 5 de la Centrul Spațial Guyana din Guyana Franceză.[24] După lansarea cu succes, administratorul NASA, Bill Nelson, a numit-o „o zi grozavă pentru planeta Pământ”.[51] Observatorul a fost atașat la vehiculul de lansare Ariane 5 printr-un inel adaptor pentru vehiculul de lansare care ar putea fi folosit de o viitoare navă spațială pentru a agăța observatorul în încercarea de a remedia problemele grave de desfășurare. Cu toate acestea, telescopul în sine nu permite service, iar astronauții nu ar putea îndeplini sarcini precum schimbul de instrumente, ca în cazul telescopului Hubble.[39] Telescopul a fost eliberat din treapta superioară la 27 de minute și 7 secunde după lansare, începând o ajustare a orbitei de 30 de zile care va plasa telescopul în punctul Lagrange L2.

Timpul nominal de misiune al telescopului este de cinci ani, cu un obiectiv de zece ani.[52] Misiunea științifică planificată de cinci ani începe după faza de punere în funcțiune care durează șase luni.[53] JWST trebuie să folosească propulsor pentru a-și menține orbita halou în jurul lui L2,lucru care care oferă o limită superioară pentru durata de viață proiectată.[53] O orbită L2 este instabilă, așa că necesită menținerea stației orbitale pentru a împiedica telescopul să se îndepărteze de configurația sa orbitală.[54]

Orbită[modificare | modificare sursă]

JWST nu va fi exact în punctul L2, ci va înconjura punctul într-o orbită halo.
Două vederi alternative ale Nebuloasei Carina făcute de Telescopul Spațial Hubble, comparând astronomia ultravioletă și vizibilă (sus) și în infraroșu (jos). Mult mai multe stele sunt vizibile în acesta din urmă.

JWST va orbita Soarele în apropierea punctului Lagrange L2 al sistemului Soare-Pământ, care este situat la 1.500.000 km mai departe de Soare decât orbita Pământului și de aproximativ patru ori mai departe decât orbita Lunii. În mod normal, un obiect care înconjoară Soarele mai departe decât Pământul și-ar finaliza orbita în mai mult de un an, dar lângă punctul L2, forța gravitațională combinată a Pământului și a Soarelui permite unei nave spațiale să orbiteze în jurul Soarelui sincron cu Pământul. .

Telescopul va înconjura punctul Soare-Pământ L2 într-o orbită halo, care va fi înclinată în raport cu planul ecliptic, va avea o rază variind între aproximativ 250.000 km și 832.000 km și va dura aproximativ jumătate de an până la finalizare.[33] Deoarece L2 este doar un punct de echilibru fără atracție gravitațională, o orbită halo nu este o orbită în sensul obișnuit: nava spațială este de fapt pe orbită în jurul Soarelui, iar orbita halo poate fi considerată ca o derivă controlată pentru a rămâne în vecinătatea punctului L2.[56] Acest lucru necesită întreținerea corectă a stației: în jur de 2,5 m/s pe an [57] din totalul ∆v de 93 m/s.[58] Două seturi de propulsoare constituie sistemul de propulsie al observatorului.[59] Deoarece propulsoarele sunt situate numai pe partea cu fața la Soare, toate operațiunile de menținere a stației sunt concepute pentru a subdepăși puțin cantitatea necesară de forță pentru a evita împingerea JWST dincolo de punctul semi-stabil L2, o situație care ar fi irecuperabilă. Oamenii din echipa proiectului de integrare și testare a telescopului spațial James Webb, au comparat menținerea precisă a stației JWST cu „Sisif [...] care rostogolește această stâncă în sus pe panta blândă din apropierea vârfului dealului – nu vrem niciodată să se rostogolească peste creastă și să se îndepărteze de el”.[60]

Animație a traiectoriei telescopului spațial James Webb
Vedere de sus
Vedere laterală
Vedere laterală de la Soare

Note[modificare | modificare sursă]

  1. ^ „NASA JWST "Who are the partners in the Webb project?". NASA. Accesat în .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:
  2. ^ StephenClark1 (). „The exact launch mass of the James Webb Space Telescope: 6161.4 kilograms. That figure includes 167.5 kg of hydrazine and 132.5 kg of dinitrogen tetroxide for the propulsion system” (Tweet). Accesat în . 
  3. ^ „JWST Orbit”. JWST User Documentation. Space Telescope Science Institute. Accesat în . 
  4. ^ „James Webb Space Telescope”. ESA eoPortal. Accesat în . [sursa nu confirmă]
  5. ^ „JWST Telescope”. James Webb Space Telescope User Documentation. Space Telescope Science Institute. . Accesat în .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:
  6. ^ „About the James Webb Space Telescope”. Accesat în .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:
  7. ^ „How does the Webb Contrast with Hubble?”. NASA. Arhivat din original la . Accesat în .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:
  8. ^ „James Webb Space Telescope JWST History: 1989–1994”. Space Telescope Science Institute, Baltimore, Maryland. . Arhivat din original la . Accesat în . 
  9. ^ „Instrumentation of JWST”. Space Telescope Science Institute. . Accesat în . 
  10. ^ „L2, the second Lagrangian Point”. Accesat în . 
  11. ^ a b „The Sunshield”. nasa.gov. NASA. Accesat în . 
  12. ^ Witze, Alexndra (). „NASA investigates renaming James Webb telescope after anti-LGBT+ claims. Some astronomers argue the flagship observatory – successor to the Hubble Space Telescope – will memorialize discrimination. Others are waiting for more evidence”. Nature. 596 (7870): 15–16. doi:10.1038/d41586-021-02010-x. PMID 34302150. Accesat în . 
  13. ^ „ESA JWST Timeline”. Arhivat din original la . Accesat în .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:
  14. ^ During, John. „The James Webb Space Telescope”. NASA. Accesat în .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:
  15. ^ „STSCI JWST History 1996”. Stsci.edu. Arhivat din original la . Accesat în . 
  16. ^ John Mather. „James Webb Space Telescope (JWST)” (PDF). National Academy of Science. Arhivat din original (PDF) la . Accesat în . 
  17. ^ Foust, Jeff (). „Coronavirus pauses work on JWST”. SpaceNews. 
  18. ^ „James Webb Space Telescope to launch in October 2021”. www.esa.int. 
  19. ^ Overbye, Dennis (). „NASA Delays James Webb Telescope Launch Date, Again – The universe will have to wait a little longer”. The New York Times. Accesat în . 
  20. ^ Foust, Jeff (). „Ariane 5 issue could delay JWST”. SpaceNews. Accesat în . 
  21. ^ „Update on Webb telescope launch”. NASA. . Accesat în .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:
  22. ^ „James Webb Space Telescope observatory is assembled”. Space Daily. . Accesat în . 
  23. ^ Foust, Jeff (). „No damage to JWST after vibration test anomaly”. SpaceNews. Accesat în . 
  24. ^ a b „Ariane 5 goes down in history with successful launch of Webb”. Arianespace (Press release). . Accesat în . 
  25. ^ Achenbach, Joel (). „NASA's James Webb Space Telescope launches in French Guiana – $10 billion successor to Hubble telescope will capture light from first stars and study distant worlds”. The Washington Post. Accesat în . 
  26. ^ Staff (). „Live Updates: Webb Telescope Launches on Long-Awaited Journey”. The New York Times. Accesat în . 
  27. ^ Overbye, Dennis; Roulette, Joey (). „James Webb Space Telescope Launches on Journey to See the Dawn of Starlight - Astronomers were jubilant as the spacecraft made it off the launchpad following decades of delays and cost overruns. The Webb is set to offer a new keyhole into the earliest moments of our universe”. The New York Times. Accesat în . 
  28. ^ https://www.nasa.gov/topics/technology/features/webb-beryllium.html
  29. ^ a b „A Deeper Sky | by Brian Koberlein”. briankoberlein.com. 
  30. ^ „FAQ for Scientists Webb Telescope/NASA”. jwst.nasa.gov. 
  31. ^ „Infrared astronomy from earth orbit”. Infrared Processing and Analysis Center, NASA Spitzer Science Center, California Institute of Technology. . Arhivat din original la .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:
  32. ^ „The James Webb Space Telescope”. nasa.gov. Accesat în . 
  33. ^ a b „L2 Orbit”. Space Telescope Science Institute. Arhivat din original la . Accesat în . 
  34. ^ „Sunshield Coatings Webb/NASA”. jwst.nasa.gov. Accesat în . 
  35. ^ Clery, Daniel (). „NASA announces more delays for giant space telescope”. Science. Accesat în . 
  36. ^ „JWST Wavefront Sensing and Control”. Space Telescope Science Institute. Arhivat din original la . Accesat în . 
  37. ^ Mallonee, Laura. „NASA's Biggest Telescope Ever Prepares for a 2021 Launch”Acces gratuit pentru testarea serviciului, necesită altfel abonament. 9. Accesat în . 
  38. ^ „JWST Mirrors”. Space Telescope Science Institute. Arhivat din original la . Accesat în . 
  39. ^ a b c „JWST”. NASA. Accesat în . 
  40. ^ „Science Instruments of NASA's James Webb Space Telescope Successfully Installed”. NASA. . Accesat în . 
  41. ^ „James Webb Space Telescope Marks Manufacturing Milestone (Press Release)”. Space Ref. . Accesat în . 
  42. ^ „JWST: Integrated Science Instrument Module (ISIM)”. NASA. . Accesat în . 
  43. ^ „James Webb Space Telescope Near Infrared Camera”. STScI. Arhivat din original la . Accesat în . 
  44. ^ „NIRCam for the James Webb Space Telescope”. University of Arizona. Accesat în . 
  45. ^ a b „JWST Current Status”. STScI. Arhivat din original la . Accesat în . 
  46. ^ Ferruit, P.; et al. (). Clampin, Mark C; Fazio, Giovanni G; MacEwen, Howard A; Oschmann, Jacobus M, ed. „The JWST near-infrared spectrograph NIRSpec: status”. Proceedings of SPIE. Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. 8442: 84422O. Bibcode:2012SPIE.8442E..2OF. doi:10.1117/12.925810. 
  47. ^ „MIRI science case from NWO proposal”, Astron.nl/miri-ngst/old/public/science/phase-a/text.htm 
  48. ^ „JWST: Mid-Infrared Instrument (MIRI)”. NASA. . Accesat în . 
  49. ^ Banks, Kimberly; Larson, Melora; Aymergen, Cagatay; Zhang, Burt (). Angeli, George Z.; Cullum, Martin J., ed. „James Webb Space Telescope Mid-Infrared Instrument Cooler systems engineering” (PDF). Proceedings of SPIE. Modeling, Systems Engineering, and Project Management for Astronomy III. 7017: 5. Bibcode:2008SPIE.7017E..0AB. doi:10.1117/12.791925. Accesat în . Fig. 1. Cooler Architecture Overview 
  50. ^ Maggie Masetti; Anita Krishnamurthi (). „JWST Science”. NASA. Accesat în . 
  51. ^ Overbye, Dennis; Roulette, Joey (). „James Webb Space Telescope Launches on Journey to See the Dawn of Starlight”. The New York Times (în engleză). ISSN 0362-4331. Accesat în . 
  52. ^ „About the Webb”. NASA James Webb Space Telescope. . 
  53. ^ a b „Frequently asked questions: How long will the Webb mission last?”. NASA James Webb Space Telescope. . 
  54. ^ „JWST Orbit”. James Webb Space Telescope User Documentation. Accesat în . 
  55. ^ Camera on ESC-D Cryotechnic upper stage (25 Dec 2021) view of newly separated JWST, as seen from the ESC-D Cryotechnic upper stage
  56. ^ „Basics of Space Flight”. Jet Propulsion Laboratory. Accesat în . 
  57. ^ Donald J. Dichmann, Cassandra M. Alberding, Wayne H. Yu (). „STATIONKEEPING MONTE CARLO SIMULATION FOR THE JAMES WEBB SPACE TELESCOPE” (PDF). NASA Goddard Space Flight Center. Arhivat din original (PDF) la . Accesat în . 
  58. ^ Matt Greenhouse. „JWST Project Report to the PMC” (PDF). NASA Goddard Space Flight Center. 
  59. ^ "James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation using Task Parallelism" 3.1 Propulsion System Overview. J. Petersen et al.
  60. ^ Kimble, Randy (). „More Than You Wanted to Know About Webb's Mid-Course Corrections!”. NASA. Accesat în .  Acest articol încorporează text dintr-o lucrare aflată în domeniul public:

Legături externe[modificare | modificare sursă]