Număr transcendent

De la Wikipedia, enciclopedia liberă
(Redirecționat de la Numere transcendente)
Jump to navigation Jump to search

În matematică, un număr real sau complex este numit transcendent dacă nu poate fi soluție a unei ecuații algebrice cu coeficienți raționali, sau, altfel spus, dacă nu este un număr algebric. Numere transcendente celebre sunt π (pi) și e.

Datorită proprietății lor, numerele transcendente nu pot fi „construite” folosind doar rigla și compasul. Cuadratura cercului este o problemă imposibil de rezolvat doar cu rigla și compasul, exact datorită faptului că π este un număr transcendent.

În mod uzual, mulțimea numerelor transcendente se notează cu .



Ulam 1.png MatematicăTeoria numerelor --- Matematică discretă (categorie)
Matematicieni specializați în Teoria numerelor (categorie)

 • •  • •  • •  • •  • •  • •  • • •  • • •