Notația bra-ket

De la Wikipedia, enciclopedia liberă
Salt la: Navigare, căutare

Notația bra-ket pentru vectorii din spațiul Hilbert în care sunt descrise stările dinamice ale unui sistem atomic în mecanica cuantică a fost introdusă de Dirac. Ea utilizează simbolurile bra și ket, construite cu ajutorul parantezelor unghiulare și al barei verticale. Denumirile sunt mnemonice: ele derivă de la cuvântul bracket (care în engleză înseamnă paranteză) și sugerează notația pentru produsele scalare și elementele de matrice.

Convenții de notație și limbaj[modificare | modificare sursă]

Orice vector din spațiul stărilor se numește vector ket [1] și este notat în forma , unde ket e un simbol identificator.

Dacă un vector din spațiul stărilor apare ca primul factor (la stânga) într-un produs scalar, el se numește vector bra [2] și este notat în forma , unde bra e un simbol identificator.

Produsul scalar dintre vectorii ket și , în această ordine, notat , apare în notația Dirac ca produsul dintre vectorul bra și vectorul ket .

Acțiunea unui operator asupra unui vector ket , notată , este echivalentă cu acțiunea operatorului la stânga asupra vectorului bra corespunzător , notată .

Drept consecință, elementul de matrice al operatorului între vectorii ket și , în această ordine, notat convențional , se scrie în notația Dirac în forma , cu două bare verticale.

Notația Dirac e convenabilă atunci când simbolurile identificatoare (care în notația convențională se scriu de obicei ca indici) sunt foarte complexe.

Note[modificare | modificare sursă]

  1. ^ Messiah, p. 206.
  2. ^ Messiah, p. 207.

Bibliografie[modificare | modificare sursă]

  • Messiah, Albert: Mécanique quantique, Tome II, Dunod, Paris, 1964.
  • Țițeica, Șerban: Mecanica cuantică, Editura Academiei Republicii Socialiste România, București, 1984.