CUDA

De la Wikipedia, enciclopedia liberă
Salt la: Navigare, căutare
CUDA Toolkit
200px-Nvidia logo.svg.png
Întreținere: NVIDIA Corporation
Ultima versiune: 4.0 RC2[1] / Aprilie 2011
SO: Windows, Linux, MacOS
Tip GPGPU
Licență Software proprietar, GNU General Public License
Disponibil în română Nu
Website: http://www.nvidia.com/object/cuda_home_new.html

CUDA (Compute Unified Device Architecture) este o arhitectură software și hardware pentru calculul paralel al datelor dezvoltată de către compania americană NVIDIA. CUDA este utilizată atât în seriile de procesoare grafice destinate utilizatorilor obișnuiți cât și în cele profesionale. O serie de interfețe de calcul din arhitectura CUDA sunt similare cu cele ale principalilor competitori: OpenCL[2] de la Khronos Group și DirectCompute[3] de la Microsoft.

Dezvoltatorii pot accesa prin intermediul CUDA setul de instrucțiuni și memoria elementelor de calcul paralel din procesoarele grafice. Utilizând CUDA, cele mai recente procesoare grafice NVIDIA pot realiza calcule specifice microprocesoarelor. Totuși, spre deosebire de acestea, arhitectura procesoarelor video este concepută pentru execuția simultană a numeroase fire, cu o viteză scăzută și nu a unui singur fir dar foarte rapid. Această tehnică de rezolvare a problemelor de uz general cu ajutorul procesoarelor video este cunoscută ca GPGPU.

În industria jocurilor pe calculator, pe lângă generarea graficii, procesoarele video mai realizează și calculele pentru interacțiunea fizică dintre obiecte (fum, foc, fluide). Un exemplu în acest sens este tehnologia PhysX. CUDA mai este utilizată și în domeniile bioinformaticii, criptografiei precum și în alte arii ale științei și tehnologiei.

CUDA pune la dispoziție atât un API de nivel jos cât și unul de nivel înalt. Primul SDK CUDA a fost făcut public în data de 15 februarie 2007, având versiuni pentru Microsoft Windows și Linux. Versiunea 2.0 oferea suport și pentru Mac OS X[4]. Toate seriile de procesoare NVIDIA (GeForce, Quadro și Tesla) începând cu G8X sunt compatibile CUDA.

Avantaje[modificare | modificare sursă]

CUDA oferă o serie de avantaje față de API-urile tradiționale de prelucrare a datelor cu ajutorul procesoarelor video.

  • Citiri nesecvențiale – se pot face citiri din locații de memorie arbitrare.
  • Memorie partajată – CUDA pune la dispoziție o regiune cu memorie partajată de mare viteză (până la 48KB per Multi-Procesor) care poate fi împărțită între thread-uri. Această regiune poate fi utilizată ca și cache gestionat de utilizator.[5]
  • Descărcări rapide și recitiri spre și disnpre procesorul video
  • Suport complet pentru operațiile cu întregi și pe bit.

Limitări[modificare | modificare sursă]

  • CUDA (având capacitatea de calcul 1.x) suportă un subset al limbajului de programare C și o serie de extensii simple. Lipsesc pointerii la funcții și recursivitatea. Un process ce rulează va utiliza mai multe spații de memorie disjuncte. Arhitectura NVIDIA Fermi oferă suport aproape complet pentru C++.
  • În cazul dispozitivelor dezvoltate pe arhitectura Fermi (capacitatea de calcul 2.x), în codul compilat pot fi folosite clase C++ atâta timp cât nicio funcție membră a clasei nu este virtuală.[6]
  • Randarea texturilor nu este suportată.
  • Pentru formatul în virgulă mobilă cu dublă precizie (pentru procesoare cu capacitatea de calcul 1.3 sau mai mult[7]) există niște abateri de la standardul IEEE 754: rotunjirea la cel mai apropiat număr par este singurul mod de rotunjire suportat pentru inversul, împărțirea și radicalul unui număr.
  • Lățimea de bandă a magistralei și latența dintre microprocesor și procesorul grafic pot reprezenta o gâturie în cazul anumitor dispozitive.
  • Pentru a se obține cea mai bună performanță, thread-urile ar trebui să ruleze cel puțin în grupuri de câte 32, atunci când numărul total de thread-uri este de ordinul miilor. Ramificarea execuției codului programului nu afectează semnificativ performanța dacă fiecare din cele 32 de thread-uri urmează aceeași cale de execuție.
  • Spre deosebire de OpenCL, procesoarele compatibile CUDA sunt fabricate doar de NVIDIA (începând cu seria GeForce 8, Quadro și Tesla).[8]
  • Uneori codul valid C/C++ poate împiedica procesul de compilare datorită tehnicilor de optimizare pe care compilatorul le aplică dacă este obligat să utilizeze resurse limitate.


Procesoare video compatibile[modificare | modificare sursă]

Capacitatea de calcul (Compute capability) reflectă funcționalitățile suportate de dispozitivele[8] CUDA. Partea întreagă a numărului versiunii indică echipamentele ce au aceeași arhitectură de bază. Modificările minore aduse arhitecturii se deosebesc între ele prin partea zecimală. Cunoașterea acestui număr este utilă în cazul în care se dorește rularea unor aplicații pentru CUDA.

Capacitatea
de calcul
(versiune)
Procesoare video Plăci video
1.0 G80 GeForce 8800GTX/Ultra/GTS, Tesla C/D/S870, FX4/5600, 360M
1.1 G86, G84, G98, G96, G96b, G94, G94b, G92, G92b GeForce 8400GS/GT, 8600GT/GTS, 8800GT/GTS, 9600GT/GSO, 9800GT/GTX/GX2, GTS 250, GT 120/30, FX 4/570, 3/580, 17/18/3700, 4700x2, 1xxM, 32/370M, 3/5/770M, 16/17/27/28/36/37/3800M, NVS420/50
1.2 GT218, GT216, GT215 GeForce 210, GT 220/40, FX380 LP, 1800M, 370/380M, NVS 2/3100M
1.3 GT200, GT200b GeForce GTX 260, GTX 275, GTX 280, GTX 285, GTX 295, Tesla C/M1060, S1070, Quadro CX, FX 3/4/5800
2.0 GF100, GF110 GeForce (GF100) GTX 465, GTX 470, GTX 480, Tesla C2050, C2070, S/M2050/70, Quadro Plex 7000, GeForce (GF110) GTX570, GTX580, GTX590
2.1 GF108, GF106, GF104, GF114, GF116 GeForce GT 420, GT 430, GT 440, GTS 450, GTX 460, GTX 550 Ti, GTX 560 Ti, 500M, Quadro 600, 2000, 4000, 5000, 6000

Arhitecturi CUDA[modificare | modificare sursă]

Flux de procesare CUDA pentru G80
1. Copiază date din memoria principală în memoria video
2. Microprocesorul transmite instrucțiunile cipului video
3. Codul se execută în paralel pe fiecare nucleu
4. Copiază rezultatul din memoria video în memoria principală

Arhitectura CUDA constă în următoarele componente de bază[9]:

  • Motoarele de procesare paralelă din interiorul procesoarelor grafice NVIDIA.
  • Suport pentru inițializare, configurare, la nivelul nucleului sistemului de operare.
  • Driver video la nivel de utilizator, care furnizează API-ul pentru dezvoltatori.
  • Set de funcții și instrucțiuni în limbajul de asamblare PTX pentru nucleele de prelucrare paralelă.

Un program scris pentru CUDA apelează o serie de nuclee paralele. Un nucleu se execută în paralel pe un set de thread-uri. Gruparea thread-urilor în blocuri rămâne la latitudinea compilatorului sau a programatorului. Procesorul grafic instanțiază un program nucleu (kernel program în engleză) într-o grilă de blocuri de thread-uri. Fiecare thread din interiorul unui bloc execută o instanță a nucleului și este identificat prin contorul program, regiștri, memorie/thread, parametri de intrare și rezultate (ieșiri). Într-o grilă se execută același nucleu, se citesc intrările din memoria globală, se scriu rezultatele în memoria globala și se sincronizează apelurile de nuclee. În modelul CUDA, fiecărui thread îi este asociat un spațiu de memorie privat, utilizat pentru regiștri, apeluri de funcții și variabile C. Fiecare bloc de thread-uri deține un spațiu de memorie rezervat comunicării între thread-uri, schimb de date și rezultate. Grilele de blocuri de thread-uri pun rezultatele în memoria globală după ce s-a realizat în prealabil o sincronizare de-a lungul nucleelor[10].

Un procesor video execută una sau mai multe grile de nuclee. Un multiprocesor pentru procesarea fluxurilor de date (streaming multiprocessor) execută unul sau mai multe blocuri de thread-uri. Nucleele CUDA și celelalte unități de execuție din cadrul unui SM execută thread-uri. Un SM execută un grup de 32 de thread-uri, numit și warp[11].

G80[modificare | modificare sursă]

În noiembrie 2006 NVIDIA a lansat prima placă video cu nucleul G80, GeForce 8800[12]. În iunie 2008, arhitectura G80 a fost îmbunătățită seminficativ și redenumită GT200. Aceasta îngloba 240 de nuclee CUDA față de cele 128 în cazul G80.

  • G80 a fost primul procesor video compatibil cu limbajul de programare C, permițând dezvoltatorilor să utilizele resursele video disponibile fără a fi nevoiți să învețe un nou limbaj.
  • G80 a înlocuit pipeline-urile pentru vertecși și pixeli cu un procesor care să le înglobeze și să execute calcule legate de geometrie, pixeli, vertecși și alte programe.
  • G80 a utilizat un procesor de thread-uri scalar, eliminând necesitatea ca programatorii să organizeze manual regiștrii pentru vectori.
  • G80 a introdus modelul de execuție SIMT (single-instruction multiple-thread în engleză) în care o singură instrucțiune se execută concurent pe mai multe thread-uri.
  • G80 a introdus memoria partajată și sincronizarea cu barieră pentru comunicațiile între thread-uri.

Fermi[modificare | modificare sursă]

Primul procesor grafic proiectat pe arhitectura Fermi conține 3 miliarde de tranzistoare. Dispune de 512 nuclee CUDA care sunt grupate în 16 SM (streaming multiprocessors)[13]. Principalele modificări aduse arhitecturii existente vizează:

  • Imbunătățirea performanței în cazul operațiilor în virgulă mobilă cu dublă precizie.
  • Suportul pentru memorii ECC le permite integratorilor de sisteme să utilizeze cu încredere procesoarele video în centrele de date. Aplicațiile de genul celor financiare sau de Imagistică medicală sunt protejate împotriva anumitor erori de memorie.
  • Introducerea memoriei Cache ierarhice deoarece anumiți algoritmi pentru procesare paralelă nu puteau utiliza memoria partajată a procesorului video. Cantitatea de memorie partajată a fost și ea mărită.
  • Comutarea mai rapidă a contextelor.
  • Creșterea vitezei de execuție a operațiilor atomice read-modify-write.
Procesor video G80 GT200 Fermi
Număr tranzistoare 681 milioane 1,4 miliarde 3 miliarde
Număr nuclee CUDA 128 240 512
Calcul în dublă precizie (virgulă mobilă) NA 30 operații FMA / ceas 256 operații FMA / ceas
Calcul în simplă precizie (virgulă mobilă) 128 operații MAD / ceas 240 operații MAD / ceas 512 operații MAD / ceas
Unități de planificare Warp / SM 1 1 2
Special Function Units / SM 2 2 4
Memorie partajată / SM 16 KB 16 KB Configurabil: 48 KB sau 16 KB
L1 Cache / SM NA NA Configurabil: 16 KB sau 48 KB
L2 Cache / SM NA NA 768 KB
Compatibilitate Memorie ECC NU NU DA
Nuclee concurente NU NU până la 16
Adresare pentru Load/Store 32-bit 32-bit 64-bit

Exemple[modificare | modificare sursă]

Exemplu de cod C++ care încarcă o textură într-o matrice din procesorul grafic:

void foo()
{
  cudaArray* cu_array;
  texture<float, 2, cudaReadModeElementType> tex;
 
  // Alocare memorie pentru matrice
  cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
  cudaMallocArray(&cu_array, &description, width, height);
 
  // Copiere imagine în matrice
  cudaMemcpyToArray(cu_array, image, width*height*sizeof(float), cudaMemcpyHostToDevice);
 
  // Setare parametri pentru textură (implicit)
  tex.addressMode[0] = cudaAddressModeClamp;
  tex.addressMode[1] = cudaAddressModeClamp;
  tex.filterMode = cudaFilterModePoint;
  tex.normalized = false; // nu normalizează coordonatele
 
  // Leagă matricea de textură
  cudaBindTextureToArray(tex, cu_array);
 
  // Pornește Kernel
  dim3 blockDim(16, 16, 1);
  dim3 gridDim((width + blockDim.x - 1)/ blockDim.x, (height + blockDim.y - 1) / blockDim.y, 1);
  kernel<<< gridDim, blockDim, 0 >>>(d_data, height, width);
 
  // Desface legătura dintre matrice și textură
  cudaUnbindTexture(tex);
} 
 
__global__ void kernel(float* odata, int height, int width)
{
   unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
   unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
   if (x < width && y < height) {
      float c = tex2D(tex, x, y);
      odata[y*width+x] = c;
   }
}

Mai jos este un exemplu scris în Python[14] care calculează în procesorul grafic produsul a două matrice:

import pycuda.compiler as comp
import pycuda.driver as drv
import numpy
import pycuda.autoinit
 
mod = comp.SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
""")
 
multiply_them = mod.get_function("multiply_them")
 
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
 
dest = numpy.zeros_like(a)
multiply_them(
        drv.Out(dest), drv.In(a), drv.In(b),
        block=(400,1,1))
 
print dest-a*b

Cod Python care simplifică operațiile de înmulțire a matricilor poate fi găsit în programul pycublas[15].

import numpy
from pycublas import CUBLASMatrix
A = CUBLASMatrix( numpy.mat([[1,2,3], [4,5,6]],numpy.float32) )
B = CUBLASMatrix( numpy.mat([[2,3], [4,5], [6,7]],numpy.float32) )
C = A*B
print C.np_mat()

Vezi și[modificare | modificare sursă]

Referințe[modificare | modificare sursă]

  1. ^ CUDA Toolkit 4.0 Overview” (PDF). Nvidia Corporation. http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf. 
  2. ^ First OpenCL demo on a GPU pe YouTube
  3. ^ DirectCompute Ocean Demo Running on NVIDIA CUDA-enabled GPU pe YouTube
  4. ^ NVIDIA CUDA Software Development Kit (CUDA SDK) - Release Notes Version 2.0 for MAC OSX
  5. ^ Silberstein, Mark (2007). „Efficient computation of Sum-products on GPUs” (PDF). http://www.technion.ac.il/~marks/docs/SumProductPaper.pdf. 
  6. ^ CUDA C Programming Guide 3.1” (PDF). CUDA Zone. Nvidia Corporation. http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf. 
  7. ^ CUDA and double precision floating point numbers
  8. ^ a b CUDA-Enabled Products”. CUDA Zone. Nvidia Corporation. http://www.nvidia.com/object/cuda_learn_products.html. 
  9. ^ CUDA Architecture Overview” (PDF). Nvidia Corporation. http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf. 
  10. ^ A Quick Refresher on CUDA” (PDF). Nvidia Corporation. p. 6. http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf. 
  11. ^ Michael Wolfe, PGI Compiler Engineer. „Understanding the CUDA Data Parallel Threading Model”. The Portland Group. http://www.pgroup.com/lit/articles/insider/v2n1a5.htm. 
  12. ^ NVIDIA GeForce 8800 GPU Architecture Overview”. NVIDIA Corporation. http://www.nvidia.com/page/8800_tech_briefs.html. 
  13. ^ An Overview of the Fermi Architecture” (PDF). Nvidia Corporation. p. 7. http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf. 
  14. ^ http://mathema.tician.de/software/pycuda PyCUDA
  15. ^ http://kered.org/blog/2009-04-13/easy-python-numpy-cuda-cublas/ pycublas