Sari la conținut

Anvelopă convexă: Diferență între versiuni

De la Wikipedia, enciclopedia liberă
Conținut șters Conținut adăugat
nou
 
definiții, biblio
Linia 7: Linia 7:


La fel ca pentru mulțimi de puncte, anvelopa convexă a fost studiată pentru [[poligon simplu |poligoane simple]], [[mișcare browniană]], curbe în spațiu și {{ill-wd|Q1347059||epigrafele funcțiilor}}. Anvelopa convexă are numeroase aplicații în matematică, statistică, optimizare combinatorială, economie, modelare geometrică și etologie. Structurile conexe includ {{ill-wd|Q7104528||anvelopa convexă ortogonală}}, {{ill-wd|Q28136697||straturile convexe}}, [[triangulația Delaunay]] și {{ill-wd|Q757267||placarea Voronoi}}.
La fel ca pentru mulțimi de puncte, anvelopa convexă a fost studiată pentru [[poligon simplu |poligoane simple]], [[mișcare browniană]], curbe în spațiu și {{ill-wd|Q1347059||epigrafele funcțiilor}}. Anvelopa convexă are numeroase aplicații în matematică, statistică, optimizare combinatorială, economie, modelare geometrică și etologie. Structurile conexe includ {{ill-wd|Q7104528||anvelopa convexă ortogonală}}, {{ill-wd|Q28136697||straturile convexe}}, [[triangulația Delaunay]] și {{ill-wd|Q757267||placarea Voronoi}}.

== Definiții ==
[[Fișier:ConvexHull.svg|thumb|Anvelopa convexă a unei mulțimi mărginite din plan: analogia firului de cauciuc]]
O mulțime de puncte din spațiul euclidian este definită drept convexă dacă conține toate segmentele care unesc oricare pereche de puncte ale sale. Anvelopa convexă a unei mulțimi <math>X</math> date poate fi definită prin:{{sfnp|Rockafellar|1970|page=12}}
# Mulțimea convexă minima (unică) conținând <math>X</math>
# Intersecția tuturor mulțimilor convexe conținând <math>X</math>
# Mulțimea tuturor combinațiilor convexe de puncte din <math>X</math>
# Reuniunea tuturor [[simplex]]urilor cu vârfuri în <math>X</math>
Pentru o mulțime cu frontieră din planul euclidian, cu elemente necoliniare, frontiera anvelopei convexe este linia închisă cu [[perimetru]]l minim conținând pe <math>X</math>. Se poate imagina întinderea unui fir de cauciuc în jurul întregii mulțimi <math>S</math>, iar apoi, eliberându-l, el se strânge; când se oprește, el închide anvelopa convexă a <math>S</math>.{{sfnp|de Berg|van Kreveld|Overmars|Schwarzkopf|2008|page=3}} Această formulare nu se poate generaliza imediat pentru dimensiuni superioare: pentru o mulțime finită de puncte din spațiul tridimensional, o vecinătate a {{ill-wd| Q831672||arborelui de acoperire}} al punctelor le include cu o suprafață arbitrar de mică, mai mică decât suprafața anvelopei convexe.<ref>{{harvtxt|Williams|Rossignac|2005}}. Vezi și Douglas Zare, [https://mathoverflow.net/a/166317/440 answer to "the perimeter of a non-convex set"], [[MathOverflow]], May 16, 2014.</ref> Cu toate acestea, în dimensiuni superioare, variante ale {{ill-wd|Q3406250||problemei obstacolelor}} de a găsi o suprafață cu energie minimă pe deasupra unei forme date poate avea drept soluție anvelopa convexă.{{sfnp|Oberman|2007}}

Pentru obiectele tridimensionale, prima definiție afirmă că anvelopa convexă este cel mai mic posibil {{ill-wd| Q1434060}} convex al obiectelor.
Definiția pe baza intersecției mulțimilor convexe poate fi extinsă la [[geometrie neeuclidiană |geometriile neeuclidiene]], iar definiția pe baza combinațiilor convexe poate fi extinsă la un [[spațiu vectorial]] real sau la un [[spațiu afin]] oarecare; anvelopa convexă poate fi generalizată abstract în cadrul {{ill-wd|Q16155113||matroizilor orientați}}.{{sfnp|Knuth|1992}}

== Note ==
{{listănote}}

== Bibliografie ==
{{refbegin|30em}}
*{{citation
| last = Andrew | first = A. M.
| doi = 10.1016/0020-0190(79)90072-3
| issue = 5
| journal = [[Information Processing Letters]]
| pages = 216–219
| title = Another efficient algorithm for convex hulls in two dimensions
| volume = 9
| year = 1979}}
*{{citation
| last = Artin | first = Emil | author-link = Emil Artin
| contribution = 2.5. Newton's Polygon
| contribution-url = https://books.google.com/books?id=VixOGTdZaCQC&pg=PA37
| mr = 0237460
| pages = 37–43
| publisher = Gordon and Breach
| title = Algebraic Numbers and Algebraic Functions
| year = 1967}}
*{{citation
| last = Auel | first = Asher
| issue = 3
| journal = [[Notices of the American Mathematical Society]]
| mr = 3889348
| pages = 330–340
| title = The mathematics of Grace Murray Hopper
| url = https://www.ams.org/journals/notices/201903/rnoti-p330.pdf
| volume = 66
| year = 2019}}
*{{citation
| last1 = Avis | first1 = David | author1-link = David Avis
| last2 = Bremner | first2 = David
| last3 = Seidel | first3 = Raimund | author3-link = Raimund Seidel
| doi = 10.1016/S0925-7721(96)00023-5
| issue = 5-6
| journal = [[Computational Geometrie (journal)|Computational Geometrie]]
| mr = 1447243
| pages = 265–301
| title = How good are convex hull algorithms?
| volume = 7
| year = 1997}}
*{{citation
| last1 = Bárány | first1 = Imre | author1-link = Imre Bárány
| last2 = Katchalski | first2 = Meir
| last3 = Pach | first3 = János | author3-link = János Pach
| doi = 10.2307/2044407
| issue = 1
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 663877
| pages = 109–114
| title = Quantitative Helly-type theorems
| volume = 86
| year = 1982}}
*{{citation
| last1 = Basch | first1 = Julien
| last2 = Guibas | first2 = Leonidas J. | author2-link = Leonidas J. Guibas
| last3 = Hershberger | first3 = John | author3-link = John Hershberger
| citeseerx = 10.1.1.134.6921
| doi = 10.1006/jagm.1998.0988
| issue = 1
| journal = [[Journal of Algorithms]]
| mr = 1670903
| pages = 1–28
| title = Data structures for mobile data
| volume = 31
| year = 1999}}
*{{citation
| last = Birkhoff | first = Garrett | author-link = Garrett Birkhoff
| doi = 10.2307/1989687
| issue = 2
| journal = [[Transactions of the American Mathematical Society]]
| mr = 1501815
| pages = 357–378
| title = Integration of functions with values in a Banach space
| volume = 38
| year = 1935}}
*{{citation
| last = Brown | first = K. Q.
| doi = 10.1016/0020-0190(79)90074-7
| issue = 5
| journal = [[Information Processing Letters]]
| pages = 223–228
| title = Voronoi diagrams from convex hulls
| volume = 9
| year = 1979}}
*{{citation
| last1 = de Berg | first1 = M. | author1-link = Mark de Berg
| last2 = van Kreveld | first2 = M. | author2-link = Marc van Kreveld
| last3 = Overmars | first3 = Mark | author3-link = Mark Overmars
| last4 = Schwarzkopf | first4 = O. | author4-link = Otfried Cheong
| edition = 3rd
| publisher = Springer
| title = Computational Geometrie: Algorithms and Applications
| year = 2008}}
*{{citation
| last = Chan | first = Timothy M. | author-link = Timothy M. Chan
| doi = 10.1142/S0218195912600096
| issue = 4
| journal = [[International Journal of Computational Geometrie and Applications]]
| mr = 2994585
| pages = 341–364
| title = Three problems about dynamic convex hulls
| volume = 22
| year = 2012}}
*{{citation
| last1 = Chang | first1 = J. S.
| last2 = Yap | first2 = C.-K.
| doi = 10.1007/BF02187692
| issue = 2
| journal = [[Discrete & Computational Geometrie]]
| mr = 834056
| pages = 155–182
| title = A polynomial solution for the potato-peeling problem
| volume = 1
| year = 1986| doi-access = free
}}
*{{citation
| last = Chazelle | first = Bernard | author-link = Bernard Chazelle
| doi = 10.1109/TIT.1985.1057060
| issue = 4
| journal = [[IEEE Transactions on Information Theory]]
| mr = 798557
| pages = 509–517
| title = On the convex layers of a planar set
| volume = 31
| year = 1985}}
*{{citation
| last = Chazelle | first = Bernard | author-link = Bernard Chazelle
| citeseerx = 10.1.1.113.8709
| doi = 10.1007/BF02573985
| issue = 1
| journal = [[Discrete & Computational Geometrie]]
| pages = 377–409
| title = An optimal convex hull algorithm in any fixed dimension
| url = https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf
| volume = 10
| year = 1993}}
*{{citation
| last1 = Chen | first1 = Qinyu
| last2 = Wang | first2 = Guozhao
| date = March 2003
| doi = 10.1016/s0167-8396(03)00003-7
| issue = 1
| journal = Computer Aided Geometric Design
| pages = 29–39
| title = A class of Bézier-like curves
| volume = 20}}
*{{citation
| last1 = Cranston | first1 = M.
| last2 = Hsu | first2 = P.
| last3 = March | first3 = P.
| issue = 1
| journal = [[Annals of Probability]]
| jstor = 2244202
| mr = 972777
| pages = 144–150
| title = Smoothness of the convex hull of planar Brownian motion
| volume = 17
| year = 1989}}
*{{citation
| last1 = Demaine | first1 = Erik D. | author1-link = Erik Demaine
| last2 = Gassend | first2 = Blaise
| last3 = O'Rourke | first3 = Joseph | author3-link = Joseph O'Rourke (professor)
| last4 = Toussaint | first4 = Godfried T. | author4-link = Godfried Toussaint
| contribution = All polygons flip finitely ... right?
| doi = 10.1090/conm/453/08801
| location = Providence, Rhode Island
| mr = 2405683
| pages = 231–255
| publisher = American Mathematical Society
| series = Contemporary Mathematics
| title = Surveys on Discrete and Computational Geometrie
| volume = 453
| year = 2008}}
*{{citation
| last = Dines | first = L. L. | author-link = Lloyd Dines
| doi = 10.2307/2302604
| issue = 4
| journal = [[American Mathematical Monthly]]
| jstor = 2302604
| mr = 1524247
| pages = 199–209
| title = On convexity
| volume = 45
| year = 1938}}
*{{citation
| last1 = Dirnböck | first1 = Hans
| last2 = Stachel | first2 = Hellmuth | author2-link = Hellmuth Stachel
| issue = 2
| journal = Journal for Geometrie and Graphics
| mr = 1622664
| pages = 105–118
| title = The development of the oloid
| url = http://www.heldermann-verlag.de/jgg/jgg01_05/jgg0113.pdf
| volume = 1
| year = 1997}}
*{{citation
| last1 = Edelsbrunner | first1 = Herbert | author1-link = Herbert Edelsbrunner
| last2 = Kirkpatrick | first2 = David G. | author2-link = David G. Kirkpatrick
| last3 = Seidel | first3 = Raimund | author3-link = Raimund Seidel
| doi = 10.1109/TIT.1983.1056714
| issue = 4
| journal = [[IEEE Transactions on Information Theory]]
| pages = 551–559
| title = On the shape of a set of points in the plane
| volume = 29
| year = 1983}}
*{{citation
| last1 = Epstein | first1 = D. B. A. | author1-link = David B. A. Epstein
| last2 = Marden | first2 = A. | author2-link = Albert Marden
| editor-last = Epstein | editor-first = D. B. A. | editor-link = David B. A. Epstein
| contribution = Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces
| mr = 903852
| pages = 113–253
| publisher = Cambridge University Press | location = Cambridge
| series = London Mathematical Society Lecture Note Series
| title = Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)
| volume = 111
| year = 1987}}
*{{citation
| last1 = Escobar | first1 = Laura
| last2 = Kaveh | first2 = Kiumars
| date = September 2020
| issue = 8
| journal = Notices of the American Mathematical Society
| pages = 1116–1123
| title = Convex polytopes, algebraic geometrie, and combinatorics
| url = https://www.ams.org/journals/notices/202008/rnoti-p1116.pdf
| volume = 67}}
*{{citation
| last = Gardner | first = L. Terrell
| doi = 10.2307/2044692
| issue = 1
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 722439
| page = 171
| title = An elementary proof of the Russo-Dye theorem
| volume = 90
| year = 1984}}
*{{citation
| last1 = Gel'fand | first1 = I. M. | author1-link = Israel Gelfand
| last2 = Kapranov | first2 = M. M. | author2-link = Mikhail Kapranov
| last3 = Zelevinsky | first3 = A. V. | author3-link = Andrei Zelevinsky
| contribution = 6. Newton Polytopes and Chow Polytopes
| doi = 10.1007/978-0-8176-4771-1
| isbn = 0-8176-3660-9
| mr = 1264417
| pages = 193–213
| publisher = Birkhäuser
| series = Mathematics: Theory & Applications
| title = Discriminants, Resultants, and Multidimensional Determinants
| year = 1994}}
*{{citation
| last1 = Getz | first1 = Wayne M.
| last2 = Wilmers | first2 = Christopher C.
| doi = 10.1111/j.0906-7590.2004.03835.x
| issue = 4
| journal = [[Ecography]]
| pages = 489–505
| publisher = Wiley
| title = A local nearest-neighbor convex-hull construction of home ranges and utilization distributions
| url = https://www.cnr.berkeley.edu/~getz/Reprints04/Getz&WilmersEcoG_SF_04.pdf
| volume = 27
| year = 2004}}
*{{citation
| last1 = Graham | first1 = Ronald L. | author1-link = Ronald Graham
| last2 = Yao | first2 = F. Frances | author2-link = Frances Yao
| doi = 10.1016/0196-6774(83)90013-5
| issue = 4
| journal = [[Journal of Algorithms]]
| mr = 729228
| pages = 324–331
| title = Finding the convex hull of a simple polygon
| volume = 4
| year = 1983}}
*{{citation
| last = Grünbaum | first = Branko | author-link = Branko Grünbaum
| edition = 2nd
| isbn = 9780387004242
| publisher = Springer
| series = Graduate Texts in Mathematics
| title = Convex Polytopes
| title-link = Convex Polytopes
| volume = 221
| year = 2003}}
*{{citation
| last = Gustin | first = William
| doi = 10.1090/S0002-9904-1947-08787-5
| journal = [[Bulletin of the American Mathematical Society]]
| mr = 20800
| pages = 299–301
| title = On the interior of the convex hull of a Euclidean set
| volume = 53
| year = 1947| doi-access = free
}}
*{{citation
| last = Harris | first = Bernard
| contribution = Mathematical models for statistical decision theory
| contribution-url = https://apps.dtic.mil/dtic/tr/fulltext/u2/737250.pdf
| mr = 0356305
| pages = 369–389
| title = Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971)
| year = 1971}}
*{{citation
| last = Herrlich | first = Horst | author-link = Horst Herrlich
| department = Proceedings of the Symposium on General Topology and Applications (Oxford, 1989)
| doi = 10.1016/0166-8641(92)90092-E
| issue = 1-3
| journal = [[Topology and its Applications]]
| mr = 1173256
| pages = 181–187
| title = Hyperconvex hulls of metric spaces
| volume = 44
| year = 1992}}
*{{citation
| last = Johnson | first = Charles R. | author-link = Charles Royal Johnson
| doi = 10.1016/0024-3795(76)90080-x
| issue = 1
| journal = [[Linear Algebra and its Applications]]
| mr = 460358
| pages = 89–94
| title = Normality and the numerical range
| volume = 15
| year = 1976| doi-access = free
}}
*{{citation
| last1 = Kashiwabara | first1 = Kenji
| last2 = Nakamura | first2 = Masataka
| last3 = Okamoto | first3 = Yoshio
| citeseerx = 10.1.1.14.4965
| doi = 10.1016/j.comgeo.2004.05.001
| issue = 2
| journal = [[Computational Geometrie (journal)|Computational Geometrie]]
| mr = 2107032
| pages = 129–144
| title = The affine representation theorem for abstract convex geometries
| volume = 30
| year = 2005}}
*{{citation
| last = Katoh | first = Naoki
| journal = IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences
| pages = 321–329
| title = Bicriteria network optimization problems
| volume = E75-A
| year = 1992}}
*{{citation
| last1 = Kernohan | first1 = Brian J.
| last2 = Gitzen | first2 = Robert A.
| last3 = Millspaugh | first3 = Joshua J.
| editor1-last = Millspaugh | editor1-first = Joshua
| editor2-last = Marzluff | editor2-first = John M.
| contribution = Analysis of animal space use and movements
| isbn = 9780080540221
| publisher = Academic Press
| title = Radio Tracking and Animal Populations
| year = 2001}}
*{{citation
| last = Kirkpatrick | first = K. A.
| arxiv = quant-ph/0305068
| doi = 10.1007/s10702-006-1852-1
| issue = 1
| journal = [[Foundations of Physics Letters]]
| pages = 95–102
| title = The Schrödinger–HJW theorem
| volume = 19
| year = 2006}}
*{{citation
| last = Kiselman | first = Christer O.
| doi = 10.1090/S0002-9947-02-02915-X
| issue = 5
| journal = [[Transactions of the American Mathematical Society]]
| mr = 1881029
| pages = 2035–2053
| title = A semigroup of operators in convexity theory
| volume = 354
| year = 2002| doi-access = free
}}
*{{citation
| last = Knuth | first = Donald E. | author-link = Donald Knuth
| doi = 10.1007/3-540-55611-7
| isbn = 3-540-55611-7
| location = Heidelberg
| mr = 1226891
| publisher = Springer-Verlag
| series = Lecture Notes in Computer Science
| title = Axioms and Hulls
| url = http://www-cs-faculty.stanford.edu/~uno/aah.html
| volume = 606
| year = 1992}}
*{{citation
| last = Kőnig | first = Dénes | author-link = Dénes Kőnig
| date = December 1922
| doi = 10.1007/bf01215899
| issue = 1
| journal = [[Mathematische Zeitschrift]]
| pages = 208–210
| title = Über konvexe Körper
| volume = 14}}; see also review by [[Hans Rademacher]] (1922), {{JFM|48.0835.01}}
*{{citation
| last1 = Krein | first1 = Mark | author1-link = Mark Krein
| last2 = Milman | first2 = David | author2-link = David Milman
| journal = [[Studia Mathematica]]
| pages = 133–138
| title = On extreme points of regular convex sets
| url = https://eudml.org/doc/219061
| volume = 9
| year = 1940}}
*{{citation
| last1 = Krein | first1 = M. | author1-link = Mark Krein
| last2 = Šmulian | first2 = V.
| doi = 10.2307/1968735
| journal = [[Annals of Mathematics]] | series = Second Series
| jstor = 1968735
| mr = 2009
| pages = 556–583
| title = On regularly convex sets in the space conjugate to a Banach space
| volume = 41
| year = 1940| hdl = 10338.dmlcz/100106
| hdl-access = free
}}
*{{citation
| last = Laurentini | first = A.
| doi = 10.1109/34.273735
| issue = 2
| journal = IEEE Transactions on Pattern Analysis and Machine Intelligence
| pages = 150–162
| title = The visual hull concept for silhouette-based image understanding
| volume = 16
| year = 1994}}
*{{citation
| last = Lay | first = Steven R.
| isbn = 0-471-09584-2
| mr = 655598
| publisher = John Wiley & Sons
| title = Convex Sets and their Applications
| year = 1982}}
*{{citation
| last = Lee | first = D. T. | author-link = Der-Tsai Lee
| doi = 10.1007/BF00993195
| issue = 2
| journal = International Journal of Computer and Information Sciences
| mr = 724699
| pages = 87–98
| title = On finding the convex hull of a simple polygon
| volume = 12
| year = 1983}}
*{{citation
| last = Mason | first = Herbert B.
| page = 698
| title = Encyclopaedia of Ships and Shipping
| url = https://books.google.com/books?id=d3gDAAAAYAAJ&pg=PA698
| year = 1908}}
*{{citation
| last1 = McCallum | first1 = Duncan
| last2 = Avis | first2 = David | author2-link = David Avis
| doi = 10.1016/0020-0190(79)90069-3
| issue = 5
| journal = [[Information Processing Letters]]
| mr = 552534
| pages = 201–206
| title = A linear algorithm for finding the convex hull of a simple polygon
| volume = 9
| year = 1979}}
*{{citation
| last = Newton | first = Isaac | author-link = Isaac Newton
| date = October 24, 1676
| publisher = University of Oxford
| title = Letter to Henry Oldenburg
| url = https://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00196
| work = The Newton Project}}
*{{citation
| last = Nicola | first = Piercarlo
| contribution = General Competitive Equilibrium
| doi = 10.1007/978-3-662-04238-0_16
| pages = 197–215
| publisher = Springer
| title = Mainstream Mathematical Economics in the 20th Century
| year = 2000}}
*{{citation
| last1 = Nilsen | first1 = Erlend B.
| last2 = Pedersen | first2 = Simen
| last3 = Linnell | first3 = John D. C.
| year = 2008
| doi = 10.1007/s11284-007-0421-9
| issue = 3
| journal = Ecological Research
| pages = 635–639
| title = Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions?
| volume = 23}}
*{{citation
| last = Oberman | first = Adam M.
| doi = 10.1090/S0002-9939-07-08887-9
| issue = 6
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 2286077
| pages = 1689–1694
| title = The convex envelope is the solution of a nonlinear obstacle problem
| volume = 135
| year = 2007| doi-access = free
}}
*{{citation
| last = Okon | first = T.
| doi = 10.4171/ZAA/952
| issue = 2
| journal = Zeitschrift für Analysis und ihre Anwendungen
| mr = 1768994
| pages = 303–314
| title = Choquet theory in metric spaces
| volume = 19
| year = 2000}}
*{{citation
| last1 = Ottmann | first1 = T.
| last2 = Soisalon-Soininen | first2 = E.
| last3 = Wood | first3 = Derick | author3-link = Derick Wood
| doi = 10.1016/0020-0255(84)90025-2
| issue = 3
| journal = [[Information Sciences (journal)|Information Sciences]]
| pages = 157–171
| title = On the definition and computation of rectilinear convex hulls
| volume = 33
| year = 1984}}
*{{citation
| last = Prasolov | first = Victor V.
| contribution = 1.2.1 The Gauss–Lucas theorem
| contribution-url = https://books.google.com/books?id=b1a7ye_EjZwC&pg=PA12
| doi = 10.1007/978-3-642-03980-5
| isbn = 3-540-40714-6
| mr = 2082772
| pages = 12–13
| publisher = Springer
| series = Algorithms and Computation in Mathematics
| title = Polynomials
| volume = 11
| year = 2004}}
*{{citation
| last = Pulleyblank | first = W. R. | author-link = William R. Pulleyblank
| editor1-last = Bachem | editor1-first = Achim
| editor2-last = Korte | editor2-first = Bernhard
| editor3-last = Grötschel | editor3-first = Martin
| contribution = Polyhedral combinatorics
| doi = 10.1007/978-3-642-68874-4_13
| pages = 312–345
| publisher = Springer
| title = Mathematical Programming: The State of the Art (XIth International Symposium on Mathematical Programming, Bonn 1982)
| year = 1983}}
*{{citation
| last = Rappoport | first = Ari
| doi = 10.1111/1467-8659.1140235
| issue = 4
| journal = Computer Graphics Forum
| pages = 235–240
| title = An efficient adaptive algorithm for constructing the convex differences tree of a simple polygon
| volume = 11
| year = 1992}}
*{{citation
| last = Reay | first = John R.
| doi = 10.1007/BF02760885
| issue = 3
| journal = [[Israel Journal of Mathematics]]
| mr = 570883
| pages = 238–244 (1980)
| title = Several generalizations of Tverberg's theorem
| volume = 34
| year = 1979}}
*{{citation
| last1 = Rieffel | first1 = Eleanor G. | author1-link = Eleanor Rieffel
| last2 = Polak | first2 = Wolfgang H.
| isbn = 978-0-262-01506-6
| pages = 215–216
| publisher = MIT Press
| title = Quantum Computing: A Gentle Introduction
| title-link = Quantum Computing: A Gentle Introduction
| year = 2011}}
*{{citation
| last = Rockafellar | first = R. Tyrrell | author-link = R. Tyrrell Rockafellar
| mr = 0274683
| publisher = Princeton University Press | location = Princeton, N.J.
| series = Princeton Mathematical Series
| title = Convex Analysis
| volume = 28
| year = 1970}}
*{{citation
| last = Rossi | first = Hugo | author-link = Hugo Rossi
| doi = 10.2307/1970292
| journal = [[Annals of Mathematics]]
| jstor = 1970292
| mr = 133479
| pages = 470–493
| series = Second Series
| title = Holomorphically convex sets in several complex variables
| volume = 74
| year = 1961}}
*{{citation
| last1 = Rousseeuw | first1 = Peter J. | author1-link = Peter Rousseeuw
| last2 = Ruts | first2 = Ida
| last3 = Tukey | first3 = John W. | author3-link = John Tukey
| doi = 10.1080/00031305.1999.10474494
| issue = 4
| journal = [[The American Statistician]]
| pages = 382–387
| title = The bagplot: A bivariate boxplot
| volume = 53
| year = 1999}}
*{{citation
| last = Sakuma | first = Itsuo
| doi = 10.1016/0022-0531(77)90095-3
| issue = 1
| journal = [[Journal of Economic Theory]]
| pages = 223–227
| title = Closedness of convex hulls
| volume = 14
| year = 1977}}
*{{citation
| last = Schneider | first = Rolf | author-link = Rolf Schneider
| doi = 10.1017/CBO9780511526282
| isbn = 0-521-35220-7
| location = Cambridge
| mr = 1216521
| publisher = Cambridge University Press
| series = Encyclopedia of Mathematics and its Applications
| title = Convex Bodies: The Brunn–Minkowski Theory
| url = https://archive.org/details/convexbodiesbrun0000schn
| volume = 44
| year = 1993}}
*{{citation
| last = Seaton | first = Katherine A.
| arxiv = 1603.08409
| doi = 10.1080/17513472.2017.1318512
| issue = 4
| journal = [[Journal of Mathematics and the Arts]]
| mr = 3765242
| pages = 187–202
| title = Sphericons and D-forms: a crocheted connection
| volume = 11
| year = 2017}}
*{{citation
| last = Sedykh | first = V. D.
| issue = 6
| journal = Trudy Seminara imeni I. G. Petrovskogo
| mr = 630708
| pages = 239–256
| title = Structure of the convex hull of a space curve
| year = 1981}}, translated in ''Journal of Soviet Mathematics'' 33 (4): 1140–1153, 1986, {{doi|10.1007/BF01086114}}
*{{citation
| last = Sontag | first = Eduardo D. | author-link = Eduardo D. Sontag
| issue = 1
| journal = [[Pacific Journal of Mathematics]]
| mr = 644949
| pages = 183–201
| title = Remarks on piecewise-linear algebra
| url = https://projecteuclid.org/euclid.pjm/1102734396
| volume = 98
| year = 1982}}
*{{citation
| last = Steinitz | first = E. | author-link = Ernst Steinitz
| doi = 10.1515/crll.1914.144.1
| journal = [[Crelle's Journal|Journal für die Reine und Angewandte Mathematik]]
| mr = 1580890
| pages = 1–40
| title = Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung)
| volume = 144
| year = 1914}}
*{{citation
| last = Talman | first = Louis A.
| issue = 1-2
| journal = Kōdai Mathematical Seminar Reports
| mr = 463985
| pages = 62–70
| title = Fixed points for condensing multifunctions in metric spaces with convex structure
| url = https://projecteuclid.org/euclid.kmj/1138833572
| volume = 29
| year = 1977}}
*{{citation
| last = Toussaint | first = Godfried | author-link = Godfried Toussaint
| citeseerx = 10.1.1.155.5671
| contribution = Solving geometric problems with the rotating calipers
| title = Proceedings of IEEE MELECON '83, Athens
| year = 1983}}
*{{citation
| last = Toussaint | first = Godfried | author-link = Godfried Toussaint
| contribution = An optimal algorithm for computing the relative convex hull of a set of points in a polygon
| pages = 853–856
| publisher = North-Holland
| title = Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2
| year = 1986}}
*{{citation
| last = Weeks | first = Jeffrey R. | author-link = Jeffrey Weeks (mathematician)
| doi = 10.1016/0166-8641(93)90032-9
| issue = 2
| journal = [[Topology and Its Applications]]
| mr = 1241189
| pages = 127–149
| title = Convex hulls and isometries of cusped hyperbolic 3-manifolds
| volume = 52
| year = 1993}}
*{{citation
| last = Westermann | first = L. R. J.
| doi = 10.1016/1385-7258(76)90065-2
| issue = 2
| journal = [[Indagationes Mathematicae]]
| mr = 0404097
| pages = 179–184
| title = On the hull operator
| volume = 38
| year = 1976| doi-access = free
}}
*{{citation
| last = White | first = F. Puryer
| date = April 1923
| issue = 68
| journal = Science Progress in the Twentieth Century
| jstor = 43432008
| pages = 517–526
| title = Pure mathematics
| volume = 17}}
*{{citation
| last = Whitley | first = Robert
| doi = 10.2307/2046536
| issue = 2
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 835903
| pages = 376–377
| title = The Kreĭn-Šmulian theorem
| volume = 97
| year = 1986}}
*{{citation
| last1 = Williams | first1 = Jason
| last2 = Rossignac | first2 = Jarek
| editor1-last = Kobbelt | editor1-first = Leif
| editor2-last = Shapiro | editor2-first = Vadim
| contribution = Tightening: curvature-limiting morphological simplification
| doi = 10.1145/1060244.1060257
| hdl = 1853/3736
| pages = 107–112
| publisher = ACM
| title = Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling 2005, Cambridge, Massachusetts, USA, June 13-15, 2005
| year = 2005}}
*{{citation
| last = Worton | first = Bruce J.
| doi = 10.2307/2533254
| issue = 4
| journal = [[Biometrics (journal)|Biometrics]]
| jstor = 2533254
| pages = 1206-1215
| title = A convex hull-based estimator of home-range size
| volume = 51
| year = 1995}}
{{refend}}


== Legături externe ==
== Legături externe ==
Linia 13: Linia 778:


[[Categorie:Operatori de închidere]]
[[Categorie:Operatori de închidere]]
[[Categorie:Analiză convexă]]
[[Categorie:Geometrie algoritmică]]
[[Categorie:Geometrie algoritmică]]
<!-- [[Categorie:Geometrie convexă]] -->

Versiunea de la 7 ianuarie 2021 20:11

Anvelopa convexă a mulțimii roșii este mulțimea convexă albastră și roșie.

În geometrie, anvelopa convexă sau închiderea convexă a unei forme este cea mai mică mulțime convexă care o conține. Anvelopa convexă poate fi definită fie ca intersecția tuturor mulțimilor convexe care conțin o submulțime dată a spațiului euclidian, fie ca mulțimea tuturor combinațiilor convexe⁠(d) ale punctelor din submulțimea dată. Pentru o porțiune dintr-un plan, anvelopa convexă poate fi vizualizată printr-un fir de cauciuc întins în jurul porțiunii.

Anvelopa convexă a unei mulțimi deschise este una deschisă, iar anvelopa convexă a unei mulțimi compacte este una compactă. Orice mulțime convexă compactă este anvelopa convexă a punctelor sale extreme⁠(d). Operatorul „anvelopă convexă” este un exemplu de operator de închidere⁠(d), iar orice antimatroid⁠(d) poate fi reprezentat prin aplicarea acestui operator de închidere la o mulțime finită de puncte. Problema algoritmilor de trasare a anvelopei convexe a unei mulțimi finite de puncte din plan sau alte spații euclidiene cu dimensiuni inferioare, precum și problema duală a intersectării semispațiilor, sunt probleme fundamentale ale geometriei algoritmice⁠(d). Pentru mulțimi situate în plan sau în spațiul tridimensional, acestea pot fi rezolvate cu resurse de calcul de complexitatea , iar pentru dimensiuni superioare, în cel mai rău caz cu resurse de calcul de complexitatea dată de teorema limitei superioare⁠(d).

La fel ca pentru mulțimi de puncte, anvelopa convexă a fost studiată pentru poligoane simple, mișcare browniană, curbe în spațiu și epigrafele funcțiilor⁠(d). Anvelopa convexă are numeroase aplicații în matematică, statistică, optimizare combinatorială, economie, modelare geometrică și etologie. Structurile conexe includ anvelopa convexă ortogonală⁠(d), straturile convexe⁠(d), triangulația Delaunay și placarea Voronoi⁠(d).

Definiții

Anvelopa convexă a unei mulțimi mărginite din plan: analogia firului de cauciuc

O mulțime de puncte din spațiul euclidian este definită drept convexă dacă conține toate segmentele care unesc oricare pereche de puncte ale sale. Anvelopa convexă a unei mulțimi date poate fi definită prin:[1]

  1. Mulțimea convexă minima (unică) conținând
  2. Intersecția tuturor mulțimilor convexe conținând
  3. Mulțimea tuturor combinațiilor convexe de puncte din
  4. Reuniunea tuturor simplexurilor cu vârfuri în

Pentru o mulțime cu frontieră din planul euclidian, cu elemente necoliniare, frontiera anvelopei convexe este linia închisă cu perimetrul minim conținând pe . Se poate imagina întinderea unui fir de cauciuc în jurul întregii mulțimi , iar apoi, eliberându-l, el se strânge; când se oprește, el închide anvelopa convexă a .[2] Această formulare nu se poate generaliza imediat pentru dimensiuni superioare: pentru o mulțime finită de puncte din spațiul tridimensional, o vecinătate a arborelui de acoperire⁠(d) al punctelor le include cu o suprafață arbitrar de mică, mai mică decât suprafața anvelopei convexe.[3] Cu toate acestea, în dimensiuni superioare, variante ale problemei obstacolelor⁠(d) de a găsi o suprafață cu energie minimă pe deasupra unei forme date poate avea drept soluție anvelopa convexă.[4]

Pentru obiectele tridimensionale, prima definiție afirmă că anvelopa convexă este cel mai mic posibil volum de delimitare⁠(d) convex al obiectelor. Definiția pe baza intersecției mulțimilor convexe poate fi extinsă la geometriile neeuclidiene, iar definiția pe baza combinațiilor convexe poate fi extinsă la un spațiu vectorial real sau la un spațiu afin oarecare; anvelopa convexă poate fi generalizată abstract în cadrul matroizilor orientați⁠(d).[5]

Note

Bibliografie

Legături externe