Sari la conținut

Teorema înălțimii

De la Wikipedia, enciclopedia liberă
(Redirecționat de la Teorema mediei geometrice)
Notații pentru teorema enunțată.
aria pătratului gri = aria dreptunghiului gri:

Teorema înălțimii într-un triunghi dreptunghic sau teorema mediei geometrice este un rezultat în geometria elementară care descrie o relație între lungimea înălțimii de pe ipotenuză într-un triunghi dreptunghic și cele două proiecții ale catetelor pe ipotenuză. Teorema spune că: Într-un triunghi dreptunghic lungimea înălțimii corespunzătoare ipotenuzei este media geometrică a lungimilor proiecțiilor catetelor pe ipotenuză.[1]

Teorema înălțimii

[modificare | modificare sursă]
Desenul pentru √p  când q este 1

Fie CD AB , D AB , Proiecția catetei CA pe AB este AD , Iar Proiecția catetei CB pe AB este BD. (vezi figura alăturată)

sau

Formula înălțimii

[modificare | modificare sursă]

Fie CD AB, D AB

Demonstrație (deducerea formulei): = = = =

unde: = cateta 1, = cateta 2 , = ipotenuza

  1. ^ Marius Perianu; Ioan Balica (). Matematică Clasa a VII-a; Semestrul al II-lea. Art educațional. p. 92. ISBN 978-606-003-340-0. 

Linkuri externe

[modificare | modificare sursă]