În matematică , prin serie hipergeometrică fundamentală , câteodată numită și q-serie hipergeometrică , se înțelege generalizarea q-seriilor analoage a seriei hipergeometrice ordinare. În mod uzual sunt definite două serii fundamentale: seria hipergeometrică fundamentală unilaterală și seria hipergeometrică fundamentală bilaterală .
Numele i-a fost dat prin analogie cu seria hipergeometrică ordinară. O serie ordinară
{
x
n
}
{\displaystyle \{x_{n}\}\,\!}
este numită o serie ordinară hipergeometrică în cazul în care raportul dintre termenii succesivi
x
n
+
1
/
x
n
{\displaystyle x_{n+1}/x_{n}\,\!}
este o funcție rațională de n . Dar dacă raportul termenilor succesivi este o funcție rațională de
q
n
{\displaystyle q^{n}\,\!}
, atunci seria se numește serie hipergeometrică fundamentală.
Serie hipergeometrică fundamentală a fost luată în considerație pentru prima dată de Eduard Heine în secolul XIX, ca un mod de a capta caracteristicile comune ale funcției theta a lui Jacobi si ale funcției eliptice .
Seria hipergeometrică fundamentală unilaterală este definită ca:
j
ϕ
k
[
a
1
a
2
…
a
j
b
1
b
2
…
b
k
;
q
,
z
]
=
∑
n
=
0
∞
(
a
1
,
a
2
,
…
,
a
j
;
q
)
n
(
b
1
,
b
2
,
…
,
b
k
,
q
;
q
)
n
(
(
−
1
)
n
q
(
n
2
)
)
1
+
k
−
j
z
n
{\displaystyle \;_{j}\phi _{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{j}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};q,z\right]=\sum _{n=0}^{\infty }{\frac {(a_{1},a_{2},\ldots ,a_{j};q)_{n}}{(b_{1},b_{2},\ldots ,b_{k},q;q)_{n}}}\left((-1)^{n}q^{n \choose 2}\right)^{1+k-j}z^{n}}
unde
(
a
1
,
a
2
,
…
,
a
m
;
q
)
n
=
(
a
1
;
q
)
n
(
a
2
;
q
)
n
…
(
a
m
;
q
)
n
{\displaystyle (a_{1},a_{2},\ldots ,a_{m};q)_{n}=(a_{1};q)_{n}(a_{2};q)_{n}\ldots (a_{m};q)_{n}}
este permutarea q-factorială . Cazul cel mai important se obține atunci când j = k+1 , având forma:
k
+
1
ϕ
k
[
a
1
a
2
…
a
k
+
1
b
1
b
2
…
b
k
;
q
,
z
]
=
∑
n
=
0
∞
(
a
1
,
a
2
,
…
,
a
k
+
1
;
q
)
n
(
b
1
,
b
2
,
…
,
b
k
,
q
;
q
)
n
z
n
.
{\displaystyle \;_{k+1}\phi _{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{k+1}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};q,z\right]=\sum _{n=0}^{\infty }{\frac {(a_{1},a_{2},\ldots ,a_{k+1};q)_{n}}{(b_{1},b_{2},\ldots ,b_{k},q;q)_{n}}}z^{n}.}
Seria hipergeometrică fundamentală bilaterală corespounde seriei hipergeometrice bilaterale și este definită ca:
j
ψ
k
[
a
1
a
2
…
a
j
b
1
b
2
…
b
k
;
q
,
z
]
=
∑
n
=
−
∞
∞
(
a
1
,
a
2
,
…
,
a
j
;
q
)
n
(
b
1
,
b
2
,
…
,
b
k
;
q
)
n
(
(
−
1
)
n
q
(
n
2
)
)
k
−
j
z
n
.
{\displaystyle \;_{j}\psi _{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{j}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};q,z\right]=\sum _{n=-\infty }^{\infty }{\frac {(a_{1},a_{2},\ldots ,a_{j};q)_{n}}{(b_{1},b_{2},\ldots ,b_{k};q)_{n}}}\left((-1)^{n}q^{n \choose 2}\right)^{k-j}z^{n}.}
Cazul cel mai important se obține atunci când j = k , având forma:
k
ψ
k
[
a
1
a
2
…
a
k
b
1
b
2
…
b
k
;
q
,
z
]
=
∑
n
=
−
∞
∞
(
a
1
,
a
2
,
…
,
a
k
;
q
)
n
(
b
1
,
b
2
,
…
,
b
k
;
q
)
n
z
n
.
{\displaystyle \;_{k}\psi _{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{k}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};q,z\right]=\sum _{n=-\infty }^{\infty }{\frac {(a_{1},a_{2},\ldots ,a_{k};q)_{n}}{(b_{1},b_{2},\ldots ,b_{k};q)_{n}}}z^{n}.}
Seria unilaterală poate fi obținută ca un caz special al celei bilaterale facând variabila b egală cu q , cel puțin atunci când nici una dintre variabilele a nu este o putere a lui q , caz în care toți termenii cu n < 0 vor dispărea.
Expresiile câtorva serii simple includ:
z
1
−
q
2
ϕ
1
[
q
q
q
2
;
q
,
z
]
=
z
1
−
q
+
z
2
1
−
q
2
+
z
3
1
−
q
3
+
…
{\displaystyle {\frac {z}{1-q}}\;_{2}\phi _{1}\left[{\begin{matrix}q\;q\\q^{2}\end{matrix}}\;;q,z\right]={\frac {z}{1-q}}+{\frac {z^{2}}{1-q^{2}}}+{\frac {z^{3}}{1-q^{3}}}+\ldots }
z
1
−
q
1
/
2
2
ϕ
1
[
q
q
1
/
2
q
3
/
2
;
q
,
z
]
=
z
1
−
q
1
/
2
+
z
2
1
−
q
3
/
2
+
z
3
1
−
q
5
/
2
+
…
{\displaystyle {\frac {z}{1-q^{1/2}}}\;_{2}\phi _{1}\left[{\begin{matrix}q\;q^{1/2}\\q^{3/2}\end{matrix}}\;;q,z\right]={\frac {z}{1-q^{1/2}}}+{\frac {z^{2}}{1-q^{3/2}}}+{\frac {z^{3}}{1-q^{5/2}}}+\ldots }
2
ϕ
1
[
q
−
1
−
q
;
q
,
z
]
=
1
+
2
z
1
+
q
+
2
z
2
1
+
q
2
+
2
z
3
1
+
q
3
+
…
.
{\displaystyle \;_{2}\phi _{1}\left[{\begin{matrix}q\;-1\\-q\end{matrix}}\;;q,z\right]=1+{\frac {2z}{1+q}}+{\frac {2z^{2}}{1+q^{2}}}+{\frac {2z^{3}}{1+q^{3}}}+\ldots .}
1
ϕ
0
(
a
;
q
,
z
)
=
∏
n
=
0
∞
1
−
a
q
n
z
1
−
q
n
z
{\displaystyle \;_{1}\phi _{0}(a;q,z)=\prod _{n=0}^{\infty }{\frac {1-aq^{n}z}{1-q^{n}z}}}
1
ϕ
0
(
a
;
q
,
z
)
=
1
−
a
z
1
−
z
1
ϕ
0
(
a
;
q
,
q
z
)
.
{\displaystyle \;_{1}\phi _{0}(a;q,z)={\frac {1-az}{1-z}}\;_{1}\phi _{0}(a;q,qz).}
Cazul special
a
=
0
{\displaystyle a=0}
este strâns legat de q-exponențial .
Ramanujan a dat următoarea identitate:
1
ψ
1
[
a
b
;
q
,
z
]
=
∑
n
=
−
∞
∞
(
a
;
q
)
n
(
b
;
q
)
n
=
(
b
/
a
;
q
)
∞
(
q
;
q
)
∞
(
q
/
a
z
;
q
)
∞
(
a
z
;
q
)
∞
(
b
;
q
)
∞
(
b
/
a
z
;
q
)
∞
(
q
/
a
;
q
)
∞
(
z
;
q
)
∞
{\displaystyle \;_{1}\psi _{1}\left[{\begin{matrix}a\\b\end{matrix}};q,z\right]=\sum _{n=-\infty }^{\infty }{\frac {(a;q)_{n}}{(b;q)_{n}}}={\frac {(b/a;q)_{\infty }\;(q;q)_{\infty }\;(q/az;q)_{\infty }\;(az;q)_{\infty }}{(b;q)_{\infty }\;(b/az;q)_{\infty }\;(q/a;q)_{\infty }\;(z;q)_{\infty }}}}
valabilă pentru
|
q
|
<
1
{\displaystyle |q|<1\,\!}
și
|
b
/
a
|
<
|
z
|
<
1
{\displaystyle |b/a|<|z|<1\,\!}
. Similar identitatea
6
ψ
6
{\displaystyle \;_{6}\psi _{6}}
a fost dată de Bailey. Astfel de identități pot fi înțelese ca o generalizare a teoremei produsului triplu al lui Jacobi, care poate fi scris folosind q-serii:
∑
n
=
−
∞
∞
q
n
(
n
+
1
)
/
2
z
n
=
(
q
;
q
)
∞
(
−
1
/
z
;
q
)
∞
(
−
z
q
;
q
)
∞
.
{\displaystyle \sum _{n=-\infty }^{\infty }q^{n(n+1)/2}z^{n}=(q;q)_{\infty }\;(-1/z;q)_{\infty }\;(-zq;q)_{\infty }.}
Ken Ono a dat următoarea serie de puteri formală :
A
(
z
;
q
)
=
d
e
f
1
1
+
z
∑
n
=
0
∞
(
z
;
q
)
n
(
−
z
q
;
q
)
n
z
n
=
∑
n
=
0
∞
(
−
1
)
n
z
2
n
q
n
2
.
{\displaystyle A(z;q){\stackrel {\rm {def}}{=}}{\frac {1}{1+z}}\sum _{n=0}^{\infty }{\frac {(z;q)_{n}}{(-zq;q)_{n}}}z^{n}=\sum _{n=0}^{\infty }(-1)^{n}z^{2n}q^{n^{2}}.}
Eduard Heine , Theorie der Kugelfunctionen , (1878) 1 , pp 97-125.
Eduard Heine, Handbuch die Kugelfunctionen. Theorie und Anwendung (1898) Springer, Berlin.
W.N. Bailey, Generalized Hypergeometric Series , (1935) Cambridge Tracts in Mathematics and Mathematical Physics, No.32, Cambridge University Press, Cambridge.
Gasper, George; Rahman, Mizan (2004 ), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, 96 (ed. 2nd), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
William Y. C. Chen and Amy Fu, Semi-Finite Forms of Bilateral Basic Hypergeometric Series Arhivat în 30 mai 2005 , la Wayback Machine . (2004)
Sylvie Corteel and Jeremy Lovejoy, Frobenius Partitions and the Combinatorics of Ramanujan's
1
ψ
1
{\displaystyle \,_{1}\psi _{1}}
Summation , (undated)
Gwynneth H. Coogan and Ken Ono , A q-series identity and the Arithmetic of Hurwitz Zeta Functions Arhivat în 29 august 2006 , la Wayback Machine . , (2003) Proceedings of the American Mathematical Society 131 , pp. 719-724