Progresie geometrică

De la Wikipedia, enciclopedia liberă
(Redirecționat de la Serie geometrică)
Sari la navigare Sari la căutare

O progresie geometrică este o serie în care (începând de la al doilea membru) raportul dintre orice membru și membrului precedent este constant. Acest raport se mai numește coeficient. Semnul ei uzual este q.

Denumirea acestei progresii provine de la proprietatea oricărui număr din șir (cu excepția capetelor) de a fi egal cu media geometrică a celor doi vecini ai săi (cu condiția ca termenii șirului să fie numere pozitive).

Progresii geometrice[modificare | modificare sursă]

Tipic pentru progresiile geometrice este faptul că raportul dintre oricare doi termeni consecutivi este constant. Sunt de forma , adică , unde sunt relațiile:

(formula generală);
(formula recurentă);
,

Acesta din urmă arată că membrul cu indice k al seriei geometrice este media geometrică a membrilor cu indicii "k + i" și "k − i", cu .

.

În relațiile de mai sus este rangul (poziția) termenului în șir (), este primul termen, este al doilea termen etc.; este rația progresiei ().

Proprietăți[modificare | modificare sursă]

Orice termen al unei progresii geometrice este media geometrică între predecesorul și succesorul său:

Exemple de progresii geometrice[modificare | modificare sursă]

  • (a 1 = 1, q = 2) 1, 2, 4, 8, 16, 32, ...
  • (a 1 = 3, q = 3) 3, 9, 27, 81, ...
  • (a 1 = 5, q = 2) 5, 10, 20, 40, 80, 160, ...
  • (a 1 = 7, q = 10) 7, 70, 700, 7000, ...

Suma termenilor unei progresii geometrice[modificare | modificare sursă]

Fie suma primilor termeni ai progresiei geometrice .

Dacă atunci:

Altfel, dacă atunci:

Demonstrație
, dacă .

Bibliografie[modificare | modificare sursă]

Vezi și[modificare | modificare sursă]