Număr abundent

De la Wikipedia, enciclopedia liberă
(Redirecționat de la Număr abundent primitiv)
Sari la navigare Sari la căutare
Demonstrație, cu rigle Cuisenaire, a abundenței numărului 12 - primul număr abundent

În teoria numerelor, un număr abundent sau excesiv este un număr care este mai mic decât suma alicotă a divizorilor săi. Diferența se numește abundența sa. (Prin contrast, dacă numărul este mai mare decât suma alicotă a divizorilor săi sau perfect egal se numește număr deficient.)[1]

Numărul întreg 12 este primul număr abundent. Divizorii săi proprii sunt 1, 2, 3, 4 și 6, astfel suma alicotă a lui 12 este 16. Numărul 12 are o abundență de 4, adică (16-12).

Definiție[modificare | modificare sursă]

Un număr n pentru care suma divizorilor σ(n) > 2n, sau, echivalent, suma divizorilor proprii (sau suma alicotă) s(n) > n.

Abundența este valoarea σ(n) − 2n (or s(n) − n).

Exemple[modificare | modificare sursă]

Primele numere abundente sunt:[2][1]

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, ...

De exemplu, divizorii proprii ai lui 24 sunt 1, 2, 3, 4, 6, 8 și 12, a căror sumă este 36. Deoarece 36 este mai mare decât 24, numărul 24 este abundent. Abundența sa este de 36 - 24 = 12.

Proprietăți[modificare | modificare sursă]

Orice multiplu al unui număr perfect sau al unui număr abundent este un număr abundent.[1]

Orice număr mai mare decât 20161 poate fi exprimat ca suma a două numere abundente.[3][1]

Număr abundent primitiv[modificare | modificare sursă]

Un număr abundent ai cărui divizori, exceptând numărul însuși, sunt toți deficienți se numește număr abundent primitiv.[1][4][5]

Primele 28 de numere abundente primitive sunt:

20, 70, 88, 104, 272, 304, 368, 464, 550, 572 ...[6]

Note[modificare | modificare sursă]

  1. ^ a b c d e Marius Coman, Enciclopedia matematică a claselor de numere întregi, pag. 13
  2. ^ Șirul A005101 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  3. ^ Șirul A048242 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  4. ^ Eric W. Weisstein, Primitive Abundant Number la MathWorld.
  5. ^ Erdős adopts a wider definition that requires a primitive abundant number to be not deficient, but not necessarily abundant (Erdős, Surányi and Guiduli. Topics in the Theory of Numbers p214. Springer 2003.). The Erdős definition allows perfect numbers to be primitive abundant numbers too.
  6. ^ Șirul A071395 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)

Vezi și[modificare | modificare sursă]