Intersecție de mulțimi

De la Wikipedia, enciclopedia liberă
Jump to navigation Jump to search
Intersecția a două mulțimi (diagramă Venn).

În matematică, intersecția A ∩ B a două mulțimi A și B este mulțimea care conține toate elementele din A care aparțin și lui B (sau, echivalent, toate elementele din B care aparțin și lui A), dar nu și alte elemente.[1]

Pentru explicarea simbolurilor folosite în acest articol, se poate consulta tabelul de simboluri matematice.

Definiția de bază[modificare | modificare sursă]

Intersecția a trei mulțimi:
Intersecții ale alfabetelor grec, latin și chirilic rus, luând în considerare numai formele literelor și ignorând pronunția lor
Exemplu de intersecție de mulțimi

Intersecția a două mulțimi A și B, notată cu AB, este mulțimea tuturor obiectelor care sunt membre ale ambele mulțimi, A și B. Simbolic,

Adică, x este un element al intersecției AB dacă și numai dacă⁠(d) x este element al lui A și element al lui B.

De exemplu:

  • Intersecția între mulțimile {1, 2, 3} și {2, 3, 4} este {2, 3}.
  • Numărul 9 nu este în intersecția mulțimii numerelor prime {2, 3, 5, 7, 11, ...} cu mulțimea numerelor impare⁠(d) {1, 3, 5, 7, 9, 11, ...}, pentru că 9 nu este prim.

Intersecția este o operație asociativă; adică, pentru orice mulțimi A, B, și C, avem că A ∩ (BC) = (AB) ∩ C. Intersecția este și comutatică; pentru orice A și BAB = BA. Astfel, are sens să vorbim despre intersecții de mai multe mulțimi. Intersecția dintre A, B, C, și D, de exemplu, este descrisă complet prin scrierea ABCD.

În interiorul unui univers U se poate defini complementul Ac al lui A ca mulțimea tuturor elementelor din U care nu fac parte din A. Acum, intersecția dintre A și B poate fi scrisă ca un complement al reuniunii complementelor lor, relație care se obține cu ușurință din legile lui De Morgan⁠(d): AB = (AcBc)c

Intersecția și mulțimile disjuncte[modificare | modificare sursă]

Spunem că A intersectează B într-un element x dacă x aparține lui A și B. Spunem că A intersectează B dacă A intersectează B în cel puțin un element. A intersectează B dacă intersecția lor este nevidă⁠(d).

Spunem că A și B sunt disjuncte dacă A nu intersectează B. Într-un limbaj simplu, ele nu au elemente în comun. A și B sunt disjuncte dacă intersecția lor este vidă, notată cu .

De exemplu, mulțimile {1, 2} și {3, 4} sunt disjuncte, în timp ce mulțimea numerelor pare intersectează mulțimea multiplilor lui 3 în multiplii lui 6.

Intersecții arbitrare[modificare | modificare sursă]

Cea mai generală noțiune este intersecția unei colecții arbitrare nevide de mulțimi. Dacă M este o mulțime nevidă ale cărei elemente sunt ele însele mulțimi, atunci x este un element din intersecția lui M , dacă și numai dacă pentru fiecare⁠(d) element A din M, x este un element al lui A. Simbolic:

Notația pentru acest ultim concept poate varia considerabil. Teoreticienii mulțimilor vor scrie uneori „⋂M”, în timp ce alții vor scrie în schimb „⋂OM O”. Acesta din urmă notație pot fi generalizate la „⋂iI Oi”, cu referire la intersecția de colecției {Ai : iI}. Aici I este o mulțime nevidă a, și Ai este o mulțime pentru fiecare i în I.

În cazul în care mulțimea index I este o mulțime de numere naturale, se poate întâlni și notația similară cu cea a unui produs infinit:

Când formatarea este dificilă, aceasta se poate scrie și „A1A2A3 ∩ ...”. Acest ultim exemplu, o intersecție a unui număr infinit numărabil de mulțimi, este de fapt foarte frecventă; de exemplu, vedeți articolul despre σ-algebre.

Intersecție nulară[modificare | modificare sursă]

Conjuncții⁠(d) de argumente în paranteze

Conjuncția niciunui argument  este tautologia (spre comparație: produsul vid⁠(d)); în consecință, intersecția niciunei mulțimi este universul⁠(d).

În secțiunea precedentă a fost exclus cazul în care M este vidă (∅). Motivul este următorul: intersecția colecției M este definită ca mulțimea

Dacă M este vidă, atunci nu există mulțimi A în M, deci, întrebarea este: „care x-uri a satisfac condiția enunțată?” Răspunsul pare să fie orice x posibil. Când M este vidă, condiția de mai sus este un exemplu de adevăr vid⁠(d). Deci intersecția familiei vide ar trebui să fie mulțimea universală⁠(d) (elementul identic al operației de intersecție) [2]

Din păcate, în conformitate cu teoria standard a mulțimilor (ZFC), mulțimea universală nu există. O soluție pentru această problemă poate fi găsite dacă observăm că intersecția peste o mulțime de mulțimi este întotdeauna o submulțime a reuniunii peste acea mulțime de mulțimi. Acest lucru poate simbolic fi scris ca

Prin urmare, definiția poate fi ușor modificată în

Acum, dacă M este vid, nu există nicio problemă. Intersecția este vidă, deoarece reuniunea peste mulțimea vidă este mulțimea vidă. În fapt, aceasta este operațiunea care ar fi fost definită în primul rând, dacă mulțimea ar fi fost definită în ZFC, deoarece cu excepția operațiunilor definite prin axiome (de exemplu, mulțimea părților⁠(d) unei mulțimi), fiecare mulțime trebuie să fie definită ca submulțime a unei alte mulțimi sau prin înlocuire⁠(d).

Referințe[modificare | modificare sursă]

  1. ^ „Stats: Probability Rules”. People.richland.edu. Accesat în . 
  2. ^ Megginson, Robert E. (), „Chapter 1”, An introduction to Banach space theory, Graduate Texts in Mathematics⁠(d), 183, New York: Springer-Verlag, pp. xx+596, ISBN 0-387-98431-3  Mai multe valori specificate pentru |author-link= și |authorlink= (ajutor); Mai multe valori specificate pentru |ISBN= și |isbn= (ajutor)

Lectură suplimentară[modificare | modificare sursă]

Legături externe[modificare | modificare sursă]