Serie de puteri

De la Wikipedia, enciclopedia liberă
Salt la: Navigare, căutare

În matematică, o serie de puteri (de o singură variabilă) este o serie infinită de forma:

f(x) = \sum_{n=0}^\infty a_n \left( x-c \right)^n = a_0 + a_1 (x-c)^1 + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots

unde an reprezintă coeficienții celui de-al n-lea termen , c este o constantă, iar x variază in jurul lui c (din acest motiv se mai spune că seria este "centrată" în jurul lui c). Această serie provine din serie Taylor a unei funcții.

În multe situații c este nul, de exemplu în cazul seriei Maclaurin. În astfel de cazuri, seria de puteri are o formă mai simplă:


f(x) = \sum_{n=0}^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots.

Astfel de serii sunt utilizate în analiza matematică, în combinatorică, dar și în electrotehnică (transformata Z). De asemenea, scrierea zecimală poate fi considerată o aplicație a seriilor de puteri cu coeficienți întregi și având ca argument x de valoare 1/10. În teoria numerelor, seriile de puteri se aplică la studiul numerelor p-adice.