Criteriul integral (Maclaurin-Cauchy)

De la Wikipedia, enciclopedia liberă
Salt la: Navigare, căutare

În matematică, criteriul integral este o metodă folosită pentru a determina naturii unei serii infinte cu termeni pozitivi. O variantă timpurie a criteriului de convergență a fost dezvoltat în Indina de Madhava în secolul XIV, si de către adepții săi. În Europa, criteriul a fost ulterior dezvoltat de Maclaurin și Cauchy, de aceea mai este numit și criteriul Maclaurin-Cauchy.

Convergența seriei \sum_{n=1}^\infty f(n) este echivalentă cu cea a integralei improprii \int_1^\infty f(x)\,dx,

unde  f : [1, \infty) \rightarrow \R este o funcție pozitivă, monotonă descrescătoare și integrabilă Riemann pe orice interval compact [1, t] \subset [1, \infty).